scholarly journals Escherichia coli resistant to tetracyclines and to other antibiotics in the faeces of U.K. chickens and pigs in 1980

1981 ◽  
Vol 87 (3) ◽  
pp. 477-483 ◽  
Author(s):  
H. Williams Smith ◽  
Margaret A. Lovell

SummaryA survey conducted in 1980, 9 years after the banning of the use of tetracyclines as feed additives in the U.K., indicated that table chickens and pigs were still a large reservoir of tetracycline-resistant Escherichia coli; the incidence of transferable tetracycline resistance was greater in chicken E. coli strains (68%) than in pig E. coli strains (20%). Large amounts of sulphonamide-resistant and of furazolidone-resistant E. coli were found in the faeces of chickens; E. coli resistant to both sulphonamides and streptomycin were common in the faeces of chickens and pigs. E. coli with transferable or mobilizable trimethoprim resistance were present in the faeces of most pigs and in the faeces of 10 % of chickens.

2019 ◽  
Vol 6 (1) ◽  
pp. e000369 ◽  
Author(s):  
Magdalena Nüesch-Inderbinen ◽  
Nadine Käppeli ◽  
Marina Morach ◽  
Corinne Eicher ◽  
Sabrina Corti ◽  
...  

BackgroundEscherichia coli is an important aetiological agent of bovine mastitis worldwide.MethodsIn this study, 82 E. coli from bovine mastitis milk samples from 49 farms were analysed for their genetic diversity using phylogenetic grouping and multilocus sequence typing. The isolates were examined by PCR for a selection of virulence factors (VFs). Antimicrobial susceptibility profiles were assessed using the disk diffusion method.ResultsThe most prevalent phylogroups were group B1 (41.5 per cent of the isolates) and group A (30.5 per cent). A variety of 35 different sequence types (STs) were identified, including ST1125 (11 per cent), ST58 (9.8 per cent), ST10 (8.5 per cent) and ST88 (7.3 per cent). Aggregate VF scores (the number of unique VFs detected for each isolate) ranged from 1 to 3 for 63.4 per cent of the isolates and were at least 4 for 12.2 per cent. For 24.4 per cent of the isolates, the score was 0. The three most frequent VFs were traT, fyuA and iutA. The majority (72 per cent) of the isolates harboured traT. The majority (68.3 per cent) of the isolates were fully susceptible to all antimicrobials tested, with 22 per cent resistant to ampicillin and 14.6 per cent to tetracycline. Resistance rates were low for gentamicin (3.7 per cent), amoxicillin/clavulanic acid (2.4 per cent) and ceftiofur (1.2 per cent), respectively.ConclusionAmong the study’s sample population, E. coli strains were genotypically diverse, even in cows from the same farm, although some STs occurred more frequently than others. Susceptibility to clinically relevant compounds remained high.


2011 ◽  
Vol 74 (8) ◽  
pp. 1245-1251 ◽  
Author(s):  
ANGELA COOK ◽  
RICHARD J. REID-SMITH ◽  
REBECCA J. IRWIN ◽  
SCOTT A. McEWEN ◽  
VIRGINIA YOUNG ◽  
...  

This study estimated the prevalence of Salmonella, Campylobacter, and Escherichia coli isolates in fresh retail grain-fed veal obtained in Ontario, Canada. The prevalence and antimicrobial resistance patterns were examined for points of public health significance. Veal samples (n = 528) were collected from February 2003 through May 2004. Twenty-one Salmonella isolates were recovered from 18 (4%) of 438 samples and underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was found in 6 (29%) of 21 Salmonella isolates; 5 (24%) of 21 isolates were resistant to five or more antimicrobials. No resistance to antimicrobials of very high human health importance was observed. Ampicillin-chloramphenicol-streptomycin-sulfamethoxazole-tetracycline resistance was found in 5 (3%) of 21 Salmonella isolates. Campylobacter isolates were recovered from 5 (1%) of 438 samples; 6 isolates underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was documented in 3 (50%) of 6 Campylobacter isolates. No Campylobacter isolates were resistant to five or more antimicrobials or category I antimicrobials. E. coli isolates were recovered from 387 (88%) of 438 samples; 1,258 isolates underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was found in 678 (54%) of 1,258 E. coli isolates; 128 (10%) of 1,258 were resistant to five or more antimicrobials. Five (0.4%) and 7 (0.6%) of 1,258 E. coli isolates were resistant to ceftiofur and ceftriaxone, respectively, while 34 (3%) of 1,258 were resistant to nalidixic acid. Ciprofloxacin resistance was not detected. There were 101 different resistance patterns observed among E. coli isolates; resistance to tetracycline alone (12.7%, 161 of 1,258) was most frequently observed. This study provides baseline prevalence and antimicrobial resistance data and highlights potential public health concerns.


2020 ◽  
Vol 7 ◽  
Author(s):  
John I. Alawneh ◽  
Ben Vezina ◽  
Hena R. Ramay ◽  
Hulayyil Al-Harbi ◽  
Ameh S. James ◽  
...  

Escherichia coli is frequently associated with mastitis in cattle. “Pathogenic” and “commensal” isolates appear to be genetically similar. With a few exceptions, no notable genotypic differences have been found between commensal and mastitis-associated E. coli. In this study, 24 E. coli strains were isolated from dairy cows with clinical mastitis in three geographic regions of Australia (North Queensland, South Queensland, and Victoria), sequenced, then genomically surveyed. There was no observed relationship between sequence type (ST) and region (p = 0.51). The most common Multi Locus Sequence Type was ST10 (38%), then ST4429 (13%). Pangenomic analysis revealed a soft-core genome of 3,463 genes, including genes associated with antibiotic resistance, chemotaxis, motility, adhesion, biofilm formation, and pili. A total of 36 different plasmids were identified and generally found to have local distributions (p = 0.02). Only 2 plasmids contained antibiotic resistance genes, a p1303_5-like plasmid encoding multidrug-resistance (trimethoprim, quaternary ammonium, beta-lactam, streptomycin, sulfonamide, and kanamycin) from two North Queensland isolates on the same farm, while three Victorian isolates from the same farm contained a pCFSAN004177P_01-like plasmid encoding tetracycline-resistance. This pattern is consistent with a local spread of antibiotic resistance through plasmids of bovine mastitis cases. Notably, co-occurrence of plasmids containing virulence factors/antibiotic resistance with putative mobilization was rare, though the multidrug resistant p1303_5-like plasmid was predicted to be conjugative and is of some concern. This survey has provided greater understanding of antibiotic resistance within E. coli-associated bovine mastitis which will allow greater prediction and improved decision making in disease management.


2015 ◽  
Vol 81 (16) ◽  
pp. 5560-5566 ◽  
Author(s):  
Seung Won Shin ◽  
Min Kyoung Shin ◽  
Myunghwan Jung ◽  
Kuastros Mekonnen Belaynehe ◽  
Han Sang Yoo

ABSTRACTThe aim of this study was to investigate the prevalence and transferability of resistance in tetracycline-resistantEscherichia coliisolates recovered from beef cattle in South Korea. A total of 155E. coliisolates were collected from feces in South Korea, and 146 were confirmed to be resistant to tetracycline. The tetracycline resistance genetet(A) (46.5%) was the most prevalent, followed bytet(B) (45.1%) andtet(C) (5.8%). Strains carryingtet(A) plustet(B) andtet(B) plustet(C) were detected in two isolates each. In terms of phylogenetic grouping, 101 (65.2%) isolates were classified as phylogenetic group B1, followed in decreasing order by D (17.4%), A (14.2%), and B2 (3.2%). Ninety-one (62.3%) isolates were determined to be multidrug resistant by the disk diffusion method. MIC testing using the principal tetracyclines, namely, tetracycline, chlortetracycline, oxytetracycline, doxycycline, and minocycline, revealed that isolates carryingtet(B) had higher MIC values than isolates carryingtet(A). Conjugation assays showed that 121 (82.9%) isolates could transfer a tetracycline resistance gene to a recipient via the IncFIB replicon (65.1%). This study suggests that the high prevalence of tetracycline-resistantE. coliisolates in beef cattle is due to the transferability of tetracycline resistance genes betweenE. colipopulations which have survived the selective pressure caused by the use of antimicrobial agents.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Sangwoo Park ◽  
Jung Wook Lee ◽  
Kevin Jerez Bogota ◽  
David Francis ◽  
Jolie Caroline González-Vega ◽  
...  

Abstract This study was conducted to investigate the effects of a direct-fed microbial (DFM) product (Bacillus subtilis strain DSM 32540) in weaned pigs challenged with K88 strain of Escherichia coli on growth performance and indicators of gut health. A total of 21 weaned pigs [initial body weight (BW) = 8.19 kg] were housed individually in pens and fed three diets (seven replicates per diet) for 21 d in a completely randomized design. The three diets were a corn-soybean meal-based basal diet without feed additives, a basal diet with 0.25% antibiotics (neo-Oxy 10-10; neomycin + oxytetracycline), or a basal diet with 0.05% DFM. All pigs were orally challenged with a subclinical dose (6.7 × 108 CFU/mL) of K88 strain of E. coli on day 3 of the study (3 d after weaning). Feed intake and BW data were collected on days 0, 3, 7, 14, and 21. Fecal scores were recorded daily. On day 21, pigs were sacrificed to determine various indicators of gut health. Supplementation of the basal diet with antibiotics or DFM did not affect the overall (days 0–21) growth performance of pigs. However, antibiotics or DFM supplementation increased (P = 0.010) gain:feed (G:F) of pigs during the post-E. coli challenge period (days 3–21) by 23% and 24%, respectively. The G:F for the DFM-supplemented diet did not differ from that for the antibiotics-supplemented diet. The frequency of diarrhea for pigs fed a diet with antibiotics or DFM tended to be lower (P = 0.071) than that of pigs fed the basal diet. The jejunal villous height (VH) and the VH to crypt depth ratio (VH:CD) were increased (P < 0.001) by 33% and 35%, respectively, due to the inclusion of antibiotics in the basal diet and by 43% and 41%, respectively due to the inclusion of DFM in the basal diet. The VH and VH:CD for the DFM-supplemented diet were greater (P < 0.05) than those for the antibiotics-supplemented diet. Ileal VH was increased (P < 0.05) by 46% due to the inclusion of DFM in the basal diet. The empty weight of small intestine, cecum, or colon relative to live BW was unaffected by dietary antibiotics or DFM supplementation. In conclusion, the addition of DFM to the basal diet improved the feed efficiency of E. coli-challenged weaned pigs to a value similar to that of the antibiotics-supplemented diet and increased jejunal VH and VH:CD ratio to values greater than those for the antibiotics-supplemented diet. Thus, under E. coli challenge, the test DFM product may replace the use of antibiotics as a growth promoter in diets for weaned pigs to improve feed efficiency and gut integrity.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1295
Author(s):  
Isabel Carvalho ◽  
María Teresa Tejedor-Junco ◽  
Margarita González-Martín ◽  
Juan Alberto Corbera ◽  
Vanessa Silva ◽  
...  

Objective: This work aimed to determine the carriage rate of ESBL-producing Escherichia coli as well as their genetic characteristics in camels from the Canary Islands, Spain. Methods: Fecal samples were recovered from 58 healthy camels from Gran Canaria (n = 32) and Fuerteventura Islands (n = 26) during July 2019. They were seeded on MacConkey (MC) agar no supplemented and supplemented (MC + CTX) with cefotaxime (2 µg/mL). Antimicrobial susceptibility was determined by disk diffusion test (CLSI, 2018). The presence of blaCTX-M, blaSHV, blaTEM,blaCMY-2 and blaOXA-1/48 genes was tested by PCR/sequencing. Furthermore, the mcr-1 (colistin resistance), tetA/tetB (tetracycline resistance), int1 (integrase of class 1 integrons) and stx1,2 genes were analyzed. Phylogenetic groups and sequence types were determined by specific-PCR/sequencing for selected isolates. Results: E. coli was obtained from all the 58 camels in MC media (100%) and in five of them in MC + CTX media (8.6%). Furthermore, 63.8% of E. coli isolates recovered from MC agar were susceptible to all the antibiotics tested. The five E. coli isolates recovered from MC + CTX media were characterized and two of them were ESBL-producers (3.4%). Both ESBL-producer isolates carried the blaCTX-M-15 gene and belonged to the lineages ST3018 (phylogroup A) and ST69 (phylogroup B1). The 3 ESBL-negative isolates recovered from MC-CTX plates were ascribed to phylogroup-B1. Conclusions: Camels can be a source of ESBL-producer bacteria, containing the widespread blaCTX-M-15 gene associated with the lineages ST3018 and ST69.


2005 ◽  
Vol 187 (11) ◽  
pp. 3708-3712 ◽  
Author(s):  
Lisa Nonaka ◽  
Sean R. Connell ◽  
Diane E. Taylor

ABSTRACT Tetracycline resistance in clinical isolates of Helicobacter pylori has been associated with nucleotide substitutions at positions 965 to 967 in the 16S rRNA. We constructed mutants which had different sequences at 965 to 967 in the 16S rRNA gene present on a multicopy plasmid in Escherichia coli strain TA527, in which all seven rrn genes were deleted. The MICs for tetracycline of all mutants having single, double, or triple substitutions at the 965 to 967 region that were previously found in highly resistant H. pylori isolates were higher than that of the mutant exhibiting the wild-type sequence of tetracycline-susceptible H. pylori. The MIC of the mutant with the 965TTC967 triple substitution was 32 times higher than that of the E. coli mutant with the 965AGA967 substitution present in wild-type H. pylori. The ribosomes extracted from the tetracycline-resistant E. coli 965TTC967 variant bound less tetracycline than E. coli with the wild-type H. pylori sequence at this region. The concentration of tetracycline bound to the ribosome was 40% that of the wild type. The results of this study suggest that tetracycline binding to the primary binding site (Tet-1) of the ribosome at positions 965 to 967 is influenced by its sequence patterns, which form the primary binding site for tetracycline.


1981 ◽  
Vol 27 (6) ◽  
pp. 616-626 ◽  
Author(s):  
M. Konarska-Kozlowska ◽  
V. N. Iyer

The nature and basis of variability in the conjugational behaviour of RM98+ (RM98-carrying) strains of Escherichia coli K-12 that are otherwise similar in phenotype was studied. An explanation for such variability is provided.Some RM98+ strains of E. coli have a plasmid aggregate, which upon conjugation yields two different conjugative plasmids. The first (pCU1) is an N conjugative group plasmid by all available criteria. The second (pCU2) could not be placed in any conjugative group known among the Enterobacteriaceae. Reciprocal DNA hybridization experiments and the gel patterns displayed by the two plasmid DNAs upon digestion with different restriction endonucleases indicate no extensive sequence homology between pCU1 and pCU2. pCU2 DNA is much longer than pCU1 DNA.Despite the absence of extensive homology, the DNA of pCU1 and pCU2 can interact. Derivatives can be selected that have all the antibiotic markers of the aggregate plasmid but that neither contain nor segregate pCU2. It is shown that in such strains a DNA fragment of molecular weight 7.9 × 106 has been added to pCU1 concurrently with a tetracycline resistance marker originally present in pCU2 and absent in pCU1. These observations suggest that tetracycline resistance in pCU2 may be part of a large translocatable element.RM98 has been used to designate a reference Inc N group plasmid. The results presented indicate that this can lead to ambiguity. pCU1 would now be the appropriate reference plasmid.


2021 ◽  
Vol 26 (1) ◽  
pp. 2244-2248
Author(s):  
AL SHAIKHLI NAWFAL HAITHAM ◽  
VIOLETA CORINA CRISTEA ◽  
IRINA GHEORGHE ◽  
SAJJAD MOHSIN IRRAYIF ◽  
HAMZAH BASIL MOHAMMED ◽  
...  

A total number of 35 strains (n=23 of K. pneumoniae and n=12 of E.coli) were isolated in May 2017 from patients with UTI, hospitalized in the National Institute for Cardiovascular Diseases Prof. C.C. Iliescu and from community infections (CA) diagnosed in Central Reference Synevo-Medicover Laboratory from Bucharest. The hospital strains were identified by BD Phoenix and the CA ones by mass spectrometry using MALDI Biotyper. The antibiotic susceptibility was determined by agar disk diffusion (CLSI, 2017) and automated methods (BD Phoenix and Vitek II system). For molecular characterization, all strains were analyzed be using PCR amplification. The investigated strains revealed the presence of tetracycline resistance gene, i.e. tet(A) (67% in E. coli and 45% of K. pneumoniae strains), tet(D) (8% of E. coli and 5% of K. pneumoniae strains), carbapenemase genes (blaOXA-48 in 40% of the K. pneumoniae strains); blaTEM (25% of E. coli strains and 10% of K. pneumoniae strains).


Sign in / Sign up

Export Citation Format

Share Document