The collisional drift mode in a partly-ionized plasma

1975 ◽  
Vol 14 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Mary K. Hudson ◽  
Charles F. Kennel

The structure of the drift instability is examined in several density regimes. Let λ e be the total electron mean free path, kz the wave-vector component along the magnetic field, and ν ⊥ / ν ∥ the ratio of perpendicular ion diffusion to parallel electron streaming rates. At low densities (kz ν e > 1), the drift mode is isothermal, and should be treated kinetically. In the finite heat conduction regimethe drift instability threshold is reduced at low densities (v⊥/v‖<0·1) and increased at high densities (v⊥/v‖>0·1), as compared with the isothermal threshold. Finally, in the energy transfer limit (kzλe<(m/M)½), the drift instability behaves adiabatically in a fully-ionized plasma, and isothermally in a partly-ionized plasma, for an ion-neutral to Coulomb collision frequency ratio vin/vii>2(m/M)½ at Ti = Tc = Tn.

Author(s):  
L. Reimer ◽  
R. Oelgeklaus

Quantitative electron energy-loss spectroscopy (EELS) needs a correction for the limited collection aperture α and a deconvolution of recorded spectra for eliminating the influence of multiple inelastic scattering. Reversely, it is of interest to calculate the influence of multiple scattering on EELS. The distribution f(w,θ,z) of scattered electrons as a function of energy loss w, scattering angle θ and reduced specimen thickness z=t/Λ (Λ=total mean-free-path) can either be recorded by angular-resolved EELS or calculated by a convolution of a normalized single-scattering function ϕ(w,θ). For rotational symmetry in angle (amorphous or polycrystalline specimens) this can be realised by the following sequence of operations :(1)where the two-dimensional distribution in angle is reduced to a one-dimensional function by a projection P, T is a two-dimensional Fourier transform in angle θ and energy loss w and the exponent -1 indicates a deprojection and inverse Fourier transform, respectively.


Author(s):  
Suichu Luo ◽  
John R. Dunlap ◽  
Richard W. Williams ◽  
David C. Joy

In analytical electron microscopy, it is often important to know the local thickness of a sample. The conventional method used for measuring specimen thickness by EELS is:where t is the specimen thickness, λi is the total inelastic mean free path, IT is the total intensity in an EEL spectrum, and I0 is the zero loss peak intensity. This is rigorouslycorrect only if the electrons are collected over all scattering angles and all energy losses. However, in most experiments only a fraction of the scattered electrons are collected due to a limited collection semi-angle. To overcome this problem we present a method based on three-dimension Poisson statistics, which takes into account both the inelastic and elastic mixed angular correction.The three-dimension Poisson formula is given by:where I is the unscattered electron intensity; t is the sample thickness; λi and λe are the inelastic and elastic scattering mean free paths; Si (θ) and Se(θ) are normalized single inelastic and elastic angular scattering distributions respectively ; F(E) is the single scattering normalized energy loss distribution; D(E,θ) is the plural scattering distribution,


2015 ◽  
Vol 29 (29) ◽  
pp. 1550206
Author(s):  
A. I. Agafonov

In this paper, using the Boltzmann transport equation, we study the zero temperature resistance of perfect metallic crystals of a finite thickness d along which a weak constant electric field E is applied. This resistance, hereinafter referred to as the phonon residual resistance, is caused by the inelastic scattering of electrons heated by the electric field, with emission of long-wave acoustic phonons and is proportional to [Formula: see text]. Consideration is carried out for Cu, Ag and Au perfect crystals with the thickness of about 1 cm, in the fields of the order of 1 mV/cm. Following the Matthiessen rule, the resistance of the pure crystals, the thicknesses of which are much larger than the electron mean free path is represented as the sum of both the impurity and phonon residual resistances. The condition on the thickness and field is found at which the low-temperature resistance of pure crystals does not depend on their purity and is determined by the phonon residual resistivity of the ideal crystals. The calculations are performed for Cu with a purity of at least 99.9999%.


2012 ◽  
Vol 9 (2) ◽  
pp. 341-351
Author(s):  
Baghdad Science Journal

The paper presents the results of precise of the calculations of the diffusion of slow electrons in ionospheric gases, such as, (Argon – Hydrogen mixture, pure Nitrogen and Argon – Helium – Nitrogen) in the presence of a uniform electric field and temperature 300 Kelvin. Such calculations lead to the value Townsend's energy coefficient (KT) as a function of E/P (electric field strength/gas pressure), electric field (E), electric drift velocity (Vd), momentum transfer collision frequency ( ), energy exchange collision frequency ( ) and characteristic energy (D/?). The following physical quantities are deduced as function s E/P: mean free path of the electrons at unit pressure, mean energy lost by an electron per collision, mean velocity of agitation and the collisional cross-section of the molecules. The results are presented graphically and in tabular form. This results appeared a good agreement with the experimental data.


2000 ◽  
Author(s):  
Taofang Zeng ◽  
Gang Chen

Abstract When electrons sweep through a double-heterojunction structure, there exist thermionic effects at the junctions and thermoelectric effects in the film. While both thermoelectric and thermionic effects have been studied for refrigeration and power generation applications separately, their interplay in heterostructures is not understood. This paper establishes a unified model including both thermionic and thermoelectric processes based on the Boltzmann transport equation for electrons, and the nonequilibrium interaction between electrons and phonons. Approximate solutions are obtained, leading to the electron temperature and Fermi level distributions inside heterostructures and discontinuities at the interfaces as a consequence of the highly nonequilibrium transport when the film thickness is much smaller than the electron mean free path. It is found that when the film thickness is smaller than the mean free path of electrons, the transport of electrons is controlled by thermionic emission. The coexistence of thermoelectric and thermionic effects may increase the power factor when the electron mean free path is comparable to the film thickness.


1996 ◽  
Vol 169 ◽  
pp. 615-616
Author(s):  
V.R. Shoutenkov

The possibility to study magnetic field of the Galaxy calculating correlation or structure functions of synchrotron background radio emission have been known long ago (Kaplan and Pikel'ner (1963); Getmantsev (1958)). But this method had not been as popular as other methods of magnetic field studies. However theoretical calculations made by Chibisov and Ptuskin (1981) showed that correlation functions of intensity of synchrotron background radio emission can give a lot of valuable information about galactic magnetic fields because of the intensity of synchrotron background radio emission depends on H⊥. According to this theory correlation C(θ, φ) and structure S(θ, φ) functions of intensity, as functions of angular separation θ between two lines of sight and position angle φ on the sky between this two lines of sight, can be presented as a sum of isotropic (not dependent from angle φ) and anisotropic parts:


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
N. N. Kovaleva ◽  
F. V. Kusmartsev ◽  
A. B. Mekhiya ◽  
I. N. Trunkin ◽  
D. Chvostova ◽  
...  

AbstractLocalisation phenomena in highly disordered metals close to the extreme conditions determined by the Mott-Ioffe-Regel (MIR) limit when the electron mean free path is approximately equal to the interatomic distance is a challenging problem. Here, to shed light on these localisation phenomena, we studied the dc transport and optical conductivity properties of nanoscaled multilayered films composed of disordered metallic Ta and magnetic FeNi nanoisland layers, where ferromagnetic FeNi nanoislands have giant magnetic moments of 10$$^3$$ 3 –10$$^5$$ 5 Bohr magnetons ($$\mu _{\mathrm{B}}$$ μ B ). In these multilayered structures, FeNi nanoisland giant magnetic moments are interacting due to the indirect exchange forces acting via the Ta electron subsystem. We discovered that the localisation phenomena in the disordered Ta layer lead to a decrease in the Drude contribution of free charge carriers and the appearance of the low-energy electronic excitations in the 1–2 eV spectral range characteristic of electronic correlations, which may accompany the formation of electronic inhomogeneities. From the consistent results of the dc transport and optical studies we found that with an increase in the FeNi layer thickness across the percolation threshold evolution from the superferromagnetic to ferromagnetic behaviour within the FeNi layer leads to the delocalisation of Ta electrons from the associated localised electronic states. On the contrary, we discovered that when the FeNi layer is discontinuous and represented by randomly distributed superparamagnetic FeNi nanoislands, the Ta layer normalized dc conductivity falls down below the MIR limit by about 60%. The discovered effect leading to the dc conductivity fall below the MIR limit can be associated with non-ergodicity and purely quantum (many-body) localisation phenomena, which need to be challenged further.


2009 ◽  
Vol 27 (1) ◽  
pp. 179-184 ◽  
Author(s):  
H. Le ◽  
L. Liu ◽  
X. Yue ◽  
W. Wan

Abstract. We investigate the ionospheric behavior in conjugate hemispheres during the 3 October 2005 solar eclipse, on the basis of observations of electron temperature (Te) from the Defense Meteorological Satellites Program (DMSP) spacecraft, F2 layer critical frequency (foF2) and F2 layer peak height (hmF2) at the Grahamstown ionosonde station, and total electron content (TEC) from the Global Positioning System (GPS) station SUTH. The observations show that when the eclipse occurred in the Northern Hemisphere, there was a decrease in Te, an increase in foF2 and TEC, and an uprising in hmF2 in its conjugate region compared with their reference values. We also simulated the ionosphere behavior during this eclipse using a mid- and low-latitude ionospheric model. The simulations agree well with the observations. Because of the eclipse effect, there are far fewer photoelectrons travelling along the magnetic field lines from the eclipse region to the conjugate region, resulting in reduced photoelectron heating in the conjugate hemisphere which causes a drop in electron temperature and subsequent disturbances in the region.


Sign in / Sign up

Export Citation Format

Share Document