scholarly journals Two-month consumption of bread enriched with a fiber mix: impact on gut microbiota and cardiometabolic profile in at cardiometabolic-risk subjects.

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Harimalala Ranaivo ◽  
Susie Guilly ◽  
Monique Sothier ◽  
Laurie Van Den Berghe ◽  
Stéphanie Lambert-Porcheron ◽  
...  

AbstractIntroductionIncreased adiposity, dyslipidemia and insulin resistance are associated with increased risk of developing cardiometabolic diseases (CM). Such deleterious phenotypes have been shown to be associated with a low gene-richness microbiota that can partly be restored by a short-term dietary intervention (energy-restricted high-protein diet, low glycemic index, enrichment with fibers) in parallel to an improvement of CM profile. In this study, we aimed at increasing fiber intake in quantity and diversity through a two-month consumption of bread enriched with a mix of selected fibers and evaluated the impact of this dietary intervention on gut microbiota gene richness and CM risk profile in subjects at risk of developing CM.Materials and methodsIn a randomized double blind cross-over design, thirty-nine subjects with CM risk profile (18–70 years old, BMI: 25–35 kg/m2, waist circumference > 80 cm for women and > 96 cm for men, fiber intake < 20g/day, low fiber diversity) consumed daily for 8 weeks 150 g of standard bread vs. 150 g of bread enriched with a 7-selected fibers mix (5.55 g vs. 16.35 g of fiber respectively; 4-week washout). Gut microbiota and CM risk factors’ analyzes were conducted before and after intervention. Stool samples were analyzed by shotgun metagenomics; microbial genes and metagenomics species (MSP) profiles were generated by mapping reads on a reference genes catalog (1529 MSP).ResultsThe included dyslipidemic subjects with CM risk profile presented a lower microbiota gene richness compared to reference healthy cohorts. The two-month consumption of fiber-rich bread did not alter microbiota gene richness but modified microbiota composition with a significant decrease of Bacteroides vulgatus (q = 1.7e-4) and a significant increase of Parabacteroides distasonis (q = 2.8e-6), Fusicatenibacter saccharivorans (q = 5e-5) and Clostridiales (q = 3.8e-2). We observed in parallel a significant decrease in total cholesterol (- 0.26 mmol/L; - 5%; p = 0.021), LDL-cholesterol (- 0.2 mmol/L; - 6%, p = 0.0061) and an improvement of insulin sensibility estimated by HOMA index (3.23–2.54 mUI/L; - 21%; p = 0.0079).These effects were even significantly more pronounced for subjects presenting the higher waist circumference. Anthropometric parameters were not altered.DiscussionThe enrichment of the diet with a mix of selected fibers for 2 months altered microbiota composition by modifying the relative abundance of specific gut bacterial species, in parallel to a significant improvement of cholesterol and insulin sensitivity parameters. Increasing the quantity and diversity of dietary fiber intake could be used as an efficient tool to favorably impact CM profile.

Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 373 ◽  
Author(s):  
Sofia Reddel ◽  
Lorenza Putignani ◽  
Federica Del Chierico

The gut microbiota performs several essential protective, structural, and metabolic functions for host health. The maintenance of a beneficial microbiota requires a homeostatic equilibrium within microbial communities, and between the microorganisms and the host. The gut microbiota composition may be affected by external factors, among them diet habits may be considered most important. In some pathological conditions such as irritable bowel syndrome (IBS), celiac disease (CD), or neurological disorders (ND), specific dietary regimens as low-fermentable, oligo-, di-, mono-saccharides and polyols (FODMAPs), ketogenic (KD), and gluten-free (GFD) diets are considered therapeutic. These kinds of diets are characterized by a reduction or exclusion of a specific nutrient from the entire dietary pattern. Despite these alimentary regimens showing beneficial effects on disease symptoms, they can affect microbiota composition, especially if they are protracted for a long time. To date, only a few studies have reported the effects of these diets on gut microbiota. In this review, we discuss the effects of low-FODMAPs, KD, and GFD on gut microbiota modulation in pathological conditions, advancing the possibility of depicting a balanced diet and developing personalized dietary intervention protocols.


2019 ◽  
Vol 78 (3) ◽  
pp. 319-328 ◽  
Author(s):  
N. M. Delzenne ◽  
C. Knudsen ◽  
M. Beaumont ◽  
J. Rodriguez ◽  
A. M. Neyrinck ◽  
...  

This review presents mechanistic studies performed in vitro and in animal models, as well as data obtained in patients that contribute to a better understanding of the impact of nutrients interacting with the gut microbiota on metabolic and behavioural alterations linked to obesity. The gut microbiota composition and function are altered in several pathological conditions including obesity and related diseases i.e. non-alcoholic fatty liver diseases (NAFLD). The gut–liver axis is clearly influenced by alterations of the gut barrier that drives inflammation. In addition, recent papers propose that specific metabolites issued from the metabolic cooperation between the gut microbes and host enzymes, modulate inflammation and gene expression in the liver. This review illustrates how dietary intervention with prebiotics or probiotics influences host energy metabolism and inflammation. Indeed, intervention studies are currently underway in obese and NAFLD patients to unravel the relevance of the changes in gut microbiota composition in the management of metabolic and behavioural disorders by nutrients interacting with the gut microbiota. In conclusion, diet is among the main triggers of NAFLD and the gut microbiota is modified accordingly, underlining the importance of the concomitant study of the nutrients and microbial impact on liver health and metabolism, in order to propose innovative, clinically relevant, therapeutic approaches.


Author(s):  
Sofia Ainonen ◽  
Mysore V Tejesvi ◽  
Md. Rayhan Mahmud ◽  
Niko Paalanne ◽  
Tytti Pokka ◽  
...  

Abstract Background Intrapartum antibiotic prophylaxis (IAP) is widely used, but the evidence of the long-term effects on the gut microbiota and subsequent health of children is limited. Here, we compared the impacts of perinatal antibiotic exposure and later courses of antibiotic courses on gut microbiota. Methods This was a prospective, controlled cohort study among 100 vaginally delivered infants with different perinatal antibiotic exposures: control (27), IAP (27), postnatal antibiotics (24), and IAP and postnatal antibiotics (22). At 1 year of age, we performed next-generation sequencing of the bacterial 16S ribosomal RNA gene of fecal samples. Results Exposure to the perinatal antibiotics had a clear impact on the gut microbiota. The abundance of the Bacteroidetes phylum was significantly higher in the control group, whereas the relative abundance of Escherichia coli was significantly lower in the control group. The impact of the perinatal antibiotics on the gut microbiota composition was greater than exposure to later courses of antibiotics (28% of participants). Conclusions Perinatal antibiotic exposure had a marked impact on the gut microbiota at the age of 1 year. The timing of the antibiotic exposure appears to be the critical factor for the changes observed in the gut microbiota. Impact Infants are commonly exposed to IAP and postnatal antibiotics, and later to courses of antibiotics during the first year of life. Perinatal antibiotics have been associated with an altered gut microbiota during the first months of life, whereas the evidence regarding the long-term impact is more limited. Perinatal antibiotic exposure had a marked impact on the infant’s gut microbiota at 1 year of age. Impact of the perinatal antibiotics on the gut microbiota composition was greater than that of the later courses of antibiotics at the age of 1 year.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Liang Xie ◽  
Rikeish R Muralitharan ◽  
Evany Dinakis ◽  
Michael E Nakai ◽  
Hamdi Jama ◽  
...  

High fibre (HF) diet protects against hypertension via the production of acidic metabolites, e.g. short-chain fatty acids, by the gut microbiota. While these metabolites have a direct role in blood pressure (BP) regulation, their acidic nature may activate proton-sensing receptors, which have anti-inflammatory functions. G-protein coupled receptor 65 (GPR65) is a proton-sensing receptor activated around pH 6.5 and is critical for gut homeostasis. We hypothesized that GPR65 is involved in the cardiovascular protection by dietary fibre. We first measured cecal pH of C57BL/6 (WT) mice after a 7-day dietary intervention with either HF or low fibre (LF) diets (n=6/group). HF diet lowered cecal pH to a level where GPR65 is highly activated, compared to the LF diet (6.5±0.1 vs 7.6±0.1, P<0.001). The impact of pH and GPR65 on T cell production of IFNγ, a pro-inflammatory cytokine, in vitro was measured by flow cytometry. Acidic pH inhibited the production of IFNγ by CD8+ T cells (pH 6.5 vs pH 7.5, P<0.001). Cells lacking GPR65 had higher IFNγ at both pH (P<0.001). To determine if GPR65 is involved in BP regulation by dietary fibre, WT and GPR65 knockout ( Gpr65 -/- ) mice were implanted with minipumps containing angiotensin II (Ang II, 0.5mg/kg/day, 28 days, n=8-9/group) and fed with HF diet. BP, cardiorenal function and immune cell infiltration were measured. Gpr65 -/- mice had higher BP compared to WT mice after 2 weeks (mean arterial pressure ± SEM; WT 79.8±2.4 vs Gpr65 -/- 95.8±1.6mmHg, P<0.001) and 4 weeks of Ang II infusion (WT 92.3±2.4 vs Gpr65 -/- 99.5±1.3, P=0.062). Gpr65 -/- mice developed cardiac (P=0.035) and renal (P=0.025) hypertrophy, and impaired renal natriuretic (P=0.054) and diuretic (P=0.056) function compared to WT mice. This was accompanied by higher macrophage (P=0.009) and γδ T cell (P=0.014) infiltration in the kidneys. In conclusion, our data suggest that pH-sensing by GPR65 contributes to the protection against hypertension by dietary fibre via inflammatory mechanisms. This is a novel mechanism that contributes to BP regulation via the gut microbiota.


mSystems ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Héctor Argüello ◽  
Jordi Estellé ◽  
Finola C. Leonard ◽  
Fiona Crispie ◽  
Paul D. Cotter ◽  
...  

ABSTRACT Salmonella colonization and infection in production animals such as pigs are a cause for concern from a public health perspective. Variations in susceptibility to natural infection may be influenced by the intestinal microbiota. Using 16S rRNA compositional sequencing, we characterized the fecal microbiome of 15 weaned pigs naturally infected with Salmonella at 18, 33, and 45 days postweaning. Dissimilarities in microbiota composition were analyzed in relation to Salmonella infection status (infected, not infected), serological status, and shedding pattern (nonshedders, single-point shedders, intermittent-persistent shedders). Global microbiota composition was associated with the infection outcome based on serological analysis. Greater richness within the microbiota postweaning was linked to pigs being seronegative at the end of the study at 11 weeks of age. Members of the Clostridia, such as Blautia, Roseburia, and Anaerovibrio, were more abundant and part of the core microbiome in nonshedder pigs. Cellulolytic microbiota (Ruminococcus and Prevotella) were also more abundant in noninfected pigs during the weaning and growing stages. Microbial profiling also revealed that infected pigs had a higher abundance of Lactobacillus and Oscillospira, the latter also being part of the core microbiome of intermittent-persistent shedders. These findings suggest that a lack of microbiome maturation and greater proportions of microorganisms associated with suckling increase susceptibility to infection. In addition, the persistence of Salmonella shedding may be associated with an enrichment of pathobionts such as Anaerobiospirillum. Overall, these results suggest that there may be merit in manipulating certain taxa within the porcine intestinal microbial community to increase disease resistance against Salmonella in pigs. IMPORTANCE Salmonella is a global threat for public health, and pork is one of the main sources of human salmonellosis. However, the complex epidemiology of the infection limits current control strategies aimed at reducing the prevalence of this infection in pigs. The present study analyzes for the first time the impact of the gut microbiota in Salmonella infection in pigs and its shedding pattern in naturally infected growing pigs. Microbiome (16S rRNA amplicon) analysis reveals that maturation of the gut microbiome could be a key consideration with respect to limiting the infection and shedding of Salmonella in pigs. Indeed, seronegative animals had higher richness of the gut microbiota early after weaning, and uninfected pigs had higher abundance of strict anaerobes from the class Clostridia, results which demonstrate that a fast transition from the suckling microbiota to a postweaning microbiota could be crucial with respect to protecting the animals.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2806 ◽  
Author(s):  
Evdokia K. Mitsou ◽  
Georgia Saxami ◽  
Emmanuela Stamoulou ◽  
Evangelia Kerezoudi ◽  
Eirini Terzi ◽  
...  

Alterations of gut microbiota are evident during the aging process. Prebiotics may restore the gut microbial balance, with β-glucans emerging as prebiotic candidates. This study aimed to investigate the impact of edible mushrooms rich in β-glucans on the gut microbiota composition and metabolites by using in vitro static batch culture fermentations and fecal inocula from elderly donors (n = 8). Pleurotus ostreatus, P. eryngii, Hericium erinaceus and Cyclocybe cylindracea mushrooms derived from various substrates were examined. Gut microbiota composition (quantitative PCR (qPCR)) and short-chain fatty acids (SCFAs; gas chromatography (GC)) were determined during the 24-h fermentation. P. eryngii induced a strong lactogenic effect, while P. ostreatus and C. cylindracea induced a significant bifidogenic effect (p for all <0.05). Furthermore, P. eryngii produced on wheat straw and the prebiotic inulin had comparable Prebiotic Indexes, while P. eryngii produced on wheat straw/grape marc significantly increased the levels of tested butyrate producers. P. ostreatus, P. eryngii and C. cylindracea had similar trends in SCFA profile; H. erinaceus mushrooms were more diverse, especially in the production of propionate, butyrate and branched SCFAs. In conclusion, mushrooms rich in β-glucans may exert beneficial in vitro effects in gut microbiota and/or SCFAs production in elderly subjects.


2019 ◽  
Vol 95 (9) ◽  
Author(s):  
Giulia Alessandri ◽  
Christian Milani ◽  
Leonardo Mancabelli ◽  
Marta Mangifesta ◽  
Gabriele Andrea Lugli ◽  
...  

ABSTRACT Domestication is the process by which anthropogenic forces shape lifestyle and behavior of wild species to accommodate human needs. The impact of domestication on animal physiology and behavior has been extensively studied, whereas its effect on the gut microbiota is still largely unexplored. For this reason, 16S rRNA gene-based and internal transcribed spacer-mediated bifidobacterial profiling, together with shotgun metagenomics, was employed to investigate the taxonomic composition and metabolic repertoire of 146 mammalian fecal samples, corresponding to 12 domesticated–feral dyads. Our results revealed that changes induced by domestication have extensively shaped the taxonomic composition of the mammalian gut microbiota. In this context, the selection of microbial taxa linked to a more efficient feed conversion into body mass and putative horizontal transmission of certain bacterial genera from humans were observed in the fecal microbiota of domesticated animals when compared to their feral relatives and to humans. In addition, profiling of the metabolic arsenal through metagenomics highlighted extensive functional adaptation of the fecal microbial community of domesticated mammals to changes induced by domestication. Remarkably, domesticated animals showed, when compared to their feral relatives, increased abundance of specific glycosyl hydrolases, possibly due to the higher intake of complex plant carbohydrates typical of commercial animal feeds.


Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 3011 ◽  
Author(s):  
Raffaella Cancello ◽  
Silvia Turroni ◽  
Simone Rampelli ◽  
Stefania Cattaldo ◽  
Marco Candela ◽  
...  

Accumulating literature is providing evidence that the gut microbiota is involved in metabolic disorders, but the question of how to effectively modulate it to restore homeostasis, especially in the elderly, is still under debate. In this study, we profiled the intestinal microbiota of 20 elderly obese women (EO) at the baseline (T0), after 15 days of hypocaloric Mediterranean diet administered as part of a nutritional-metabolic rehabilitation program for obesity (T1), and after a further 15 days of the same diet supplemented with a probiotic mix (T2). Fecal samples were characterized by Illumina MiSeq sequencing of the 16S rRNA gene. The EO microbiota showed the typical alterations found in obesity, namely, an increase in potential pro-inflammatory components (i.e., Collinsella) and a decrease in health-promoting, short-chain fatty acid producers (i.e., Lachnospiraceae and Ruminococcaceae members), with a tendency to reduced biodiversity. After 15 days of the rehabilitation program, weight decreased by (2.7 ± 1.5)% and the gut microbiota dysbiosis was partially reversed, with a decline of Collinsella and an increase in leanness-related taxa. During the next 15 days of diet and probiotics, weight dropped further by (1.2 ± 1.1)%, markers of oxidative stress improved, and Akkermansia, a mucin degrader with beneficial effects on host metabolism, increased significantly. These findings support the relevant role of a correct dietetic approach, even in the short term, to modulate the EO gut microbiota towards a metabolic health-related configuration, counteracting the increased risk of morbidity in these patients.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 293-294
Author(s):  
Camila S Marcolla ◽  
Benjamin Willing

Abstract This study aimed to characterize poultry microbiota composition in commercial farms using 16S rRNA sequencing. Animals raised in sanitized environments have lower survival rates when facing pathogenic challenges compared to animals naturally exposed to commensal organisms. We hypothesized that intensive rearing practices inadvertently impair chicken exposure to microbes and the establishment of a balanced gut microbiota. We compared gut microbiota composition of broilers (n = 78) and layers (n = 20) from different systems, including commercial intensive farms with and without in-feed antibiotics, organic free-range farms, backyard-raised chickens and chickens in an experimental farm. Microbial community composition of conventionally raised broilers was significantly different from antibiotic-free broilers (P = 0.012), from broilers raised outdoors (P = 0.048) and in an experimental farm (P = 0.006) (Fig1). Significant community composition differences were observed between antibiotic-fed and antibiotic-free chickens (Fig2). Antibiotic-free chickens presented higher alpha-diversity, higher relative abundance of Deferribacteres, Fusobacteria, Bacteroidetes and Actinobacteria, and lower relative abundance of Firmicutes, Clostridiales and Enterobacteriales than antibiotic-fed chickens (P &lt; 0.001) (Fig3). Microbial community composition significantly changed as birds aged. In experimental farm, microbial community composition was significant different for 7, 21 and 35 day old broilers (P &lt; 0.001), and alpha diversity increased from 7 to 21d (P &lt; 0.024), but not from 21 to 35d; whereas, in organic systems, increases in alpha-diversity were observed from 7d to 21d, and from 21d to 35d (P &lt; 0.05). Broilers and layers raised together showed no differences in microbiota composition and alpha diversity (P &gt; 0.8). It is concluded that production practices consistently impact microbial composition, and that antibiotics significantly reduces microbial diversity. We are now exploring the impact of differential colonization in a controlled setting, to determine the impact of the microbes associated with extensively raised chickens. This study will support future research and the development of methods to isolate and introduce beneficial microbes to commercial systems.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1194-1194
Author(s):  
Corinne Cannavale ◽  
Annemarie Krug ◽  
Hannah Holscher ◽  
Naiman Khan

Abstract Objectives Converging evidence suggests probiotic supplementation can reduce cognitive and metabolic concerns for persons with gastrointestinal disorders. However, in healthy populations the impact of probiotics on these outcomes is lacking. Thus, we aimed to determine whether symptoms of depression and anxiety, memory function, cortisol concentrations, and gut microbiota composition are altered by consumption of a fermented dairy beverage containing probiotic microorganisms in healthy adults. Methods Adults (25–45 yrs, N = 26) free of physician diagnosed gastrointestinal and mental illness were enrolled in a single-blind, randomized crossover trial. Participants completed testing prior to and after 4-week consumption, with a 2–4 week washout between treatments of kefir, a dairy-based fermented beverage containing 25–30 billion colony forming units of live and active kefir cultures (including 3 Bifidobacterium spp., 6 Lactobacillus spp., Streptococcus Diacetylacti., Luconostoc Cremoris, and Staccharomyces Florentinus) or isocaloric, non-fermented dairy-based control beverage. Hippocampal-dependent relational memory was assessed using a spatial reconstruction task. Symptoms of depression and anxiety were assessed using the depression anxiety and stress subscale (DASS). Pooled 24-hour urine samples were analyzed using an enzyme-linked immunosorbent assay to determine urinary-free cortisol (UFC) concentrations. Fecal microbiota composition was assessed using 16 s rDNA sequencing. Results Post-test logistic regression analysis revealed an increase in the number of participants with Lactobacillus spp. present (b = 3.00, P &lt; 0.01) after consumption of kefir. Two-by-two repeated measure ANOVA displayed that the treatment improved performance on two metrics of relational memory (F[1, 25] = 4.54, P = 0.043, F[1, 25] = 5.50, P = 0.027). UFC and DASS scores were not significantly changed by either arm of the intervention. Conclusions These results reveal that kefir consumption increases the presence of probiotic microorganisms in the gut and improves relational memory in healthy adults. The impact of fermented dairy beverages containing probiotic microorganisms in healthy populations should be studied at a larger scale to better elucidate these outcomes. Funding Sources USDA National Institute of Food and Agriculture.


Sign in / Sign up

Export Citation Format

Share Document