scholarly journals Mouse Hippocampal Organotypic Tissue Cultures Exposed to In Vitro “Ischemia” Show Selective and Delayed CA1 Damage that is Aggravated by Glucose

2003 ◽  
Vol 23 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Anna Rytter ◽  
Tobias Cronberg ◽  
Fredrik Asztély ◽  
Sailasree Nemali ◽  
Tadeusz Wieloch

Oxygen and glucose deprivation (OGD) in cell cultures is generally studied in a medium, such as artificial cerebrospinal fluid (CSF), with an ion composition similar to that of the extracellular fluid of the normal brain (2 to 4 mmol/L K+, 2 to 3 mmol/L Ca2+; pH 7.4). Because the distribution of ions across cell membranes dramatically shifts during ischemia, the authors exposed mouse organotypic hippocampal tissue cultures to OGD in a medium, an ischemic cerebrospinal fluid, with an ion composition similar to the extracellular fluid of the brain during ischemia in vivo (70 mmol/L K+, 0.3 mmol/L Ca2+; pH 6.8). In ischemic CSF, OGD induced a selective and delayed cell death in the CA1 region, as assessed by propidium iodide uptake. Cell death was glutamate receptor dependent since blockade of the N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors mitigated cell damage. Hyperglycemia aggravates ischemic brain damage in vivo, whereas in vitro glucose in artificial CSF prevents oxygen deprivation-induced damage. The authors demonstrate that glucose in ischemic CSF significantly exacerbates cell damage after oxygen deprivation. This new model of in vitro “ischemia” can be useful in future studies of the mechanisms and treatment of ischemic cell death, including studies using genetically modified mice.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Juan Manuel Sacnun ◽  
Rebecca Herzog ◽  
Maria Bartosova ◽  
Claus Schmitt ◽  
Klaus Kratochwill

Abstract Background and Aims The composition of all currently available peritoneal dialysis (PD) fluids triggers morphological and functional changes in the peritoneal membrane. Periodic exposure leads to vasculopathy, hypervascularization, and diabetes-like damage of vessels, eventually leading to failure of the technique. Patients undergoing dialysis generally, have a high risk of cardiovascular events. It is currently unclear if there is a mechanistic link between peritoneal membrane failure and cardiovascular risk. In vitro and in vivo studies have shown that cytoprotective additives (e.g. dipeptide alanyl-glutamine (AlaGln) or kinase inhibitor lithium chloride (LiCl)) to PDF reduce peritoneal damage. Here, we developed an experimental model for investigating effects of these cytoprotective additives in PDF in the cardiovascular context. Method For modelling the peritoneal membrane in vitro, mesothelial and endothelial cells were co-cultured in transwell plates. Mesothelial cells were grown in the upper compartment and primary human umbilical vein endothelial cells (HUVEc) or primary microvascular cells were grown in the lower compartment. PDF with or without cytoprotective compounds, was added to the upper compartment to only expose mesothelial cells directly to different dilutions of the fluid. Effects on cell damage was assessed by quantification of lactate-dehydrogenase (LDH) release and live-dead staining of cells. Proteome profiles were analysed for both cell-types separately and in combination using two-dimensional difference gel electrophoresis (2D-DiGE) and liquid chromatography coupled to mass spectrometry (LC-MS). In vitro findings were related to PD-induced arteriolar changes based on abundance profiles of micro-dissected omental arterioles of children treated with conventional PD-fluids and age-matched controls with normal renal function. Results Marked cellular injury of HUVEc after PD-fluid exposure was associated with a molecular landscape of the enriched biological process clusters ‘glucose catabolic process’, ‘cell redox homeostasis’, ‘RNA metabolic process’, ‘protein folding’, ‘regulation of cell death’, and ‘actin cytoskeleton reorganization’ that characterize PD-fluid cytotoxicity and counteracting cellular repair process respectively. PDF-induced cell damage was reduced by AlaGln and LiCl both in mesothelial and endothelial cells. Proteome analysis revealed perturbation of major cellular processes including regulation of cell death and cytoskeleton reorganization. Selected markers of angiogenesis, oxidative stress, cell junctions and transdifferentiation were counter-regulated by the additives. Co-cultured cells yielded differently regulated pathways following PDF exposure compared to separate culture. Comparison to human arterioles confirmed overlapping protein regulation between endothelial cells in vitro and in vivo, proving harmful effects of PD-fluids on endothelial cells leading to drastic changes of the cellular process landscape. Conclusion In summary, this study shows harmful effects of PD-fluids also effecting endothelial cells and elucidates potential mechanisms by which cytoprotective additives may counteract the signalling axis between local peritoneal damage and systemic vasculopathy. An in vitro co-culture system may be an attractive approach to simulate the peritoneal membrane for testing direct and indirect effects of cytoprotective additives in PDF. When cultured and stressed in close proximity cells may respond differently. Characterisation of PD-induced perturbations will allow identifying molecular mechanisms linking the peritoneal and cardiovascular context, offering therapeutic targets to reduce current limitations of PD and ultimately decreasing cardiovascular risk of dialysis patients.


2009 ◽  
Vol 13 (04n05) ◽  
pp. 544-551 ◽  
Author(s):  
Magdalena Cañete ◽  
Juan C. Stockert ◽  
Angeles Villanueva

Photodynamic therapy (PDT) is a subject of increasing biomedical research and represents a very promising therapeutic modality for palliative or even curative treatment of some superficial or endoscopically accessible tumors. In addition to the first photosensitizers (PSs) applied (hematoporphyrin-based drugs), second generation PSs with improved photophysical and photobiological properties are now studied using cell cultures, experimental tumors and clinical trials. On the other hand, there is a growing interest in the analysis of cell death mechanisms by apoptosis, which is especially relevant in oncology, because many anticancer drugs work, at least in part, by triggering apoptosis in neoplastic cells both in vitro and in vivo. The evaluation of cell death mechanisms is an important parameter to determine the efficacy and the potential toxicity of a treatment, allowing better adjustment of protocol. Using cell cultures, our research team has studied the mechanisms of cell damage and death implicated in the photodynamic processes, as well as the relationship between the cellular localization of the PS and the organelle damage during photosensitization. The results obtained in our laboratory provide a deeper understanding on the action mechanisms that lead to cell inactivation by PDT, and also allow selection of PSs with higher potential for clinical application than those currently in use.


2009 ◽  
Vol 423 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Sara Maria Nancy Onnebo ◽  
Adolfo Saiardi

Inositol pyrophosphates are involved in a variety of cellular functions, but the specific pathways and/or downstream targets remain poorly characterized. In the present study we use Saccharomyces cerevisiae mutants to examine the potential roles of inositol pyrophosphates in responding to cell damage caused by ROS (reactive oxygen species). Yeast lacking kcs1 [the S. cerevisiae IP6K (inositol hexakisphosphate kinase)] have greatly reduced IP7 (diphosphoinositol pentakisphosphate) and IP8 (bisdiphosphoinositol tetrakisphosphate) levels, and display increased resistance to cell death caused by H2O2, consistent with a sustained activation of DNA repair mechanisms controlled by the Rad53 pathway. Other Rad53-controlled functions, such as actin polymerization, appear unaffected by inositol pyrophosphates. Yeast lacking vip1 [the S. cerevisiae PP-IP5K (also known as IP7K, IP7 kinase)] accumulate large amounts of the inositol pyrophosphate IP7, but have no detectable IP8, indicating that this enzyme represents the physiological IP7 kinase. Similar to kcs1Δ yeast, vip1Δ cells showed an increased resistance to cell death caused by H2O2, indicating that it is probably the double-pyrophosphorylated form of IP8 [(PP)2-IP4] which mediates the H2O2 response. However, these inositol pyrophosphates are not involved in directly sensing DNA damage, as kcs1Δ cells are more responsive to DNA damage caused by phleomycin. We observe in vivo a rapid decrease in cellular inositol pyrophosphate levels following exposure to H2O2, and an inhibitory effect of H2O2 on the enzymatic activity of Kcs1 in vitro. Furthermore, parallel cysteine mutagenesis studies performed on mammalian IP6K1 are suggestive that the ROS signal might be transduced by the direct modification of this evolutionarily conserved class of enzymes.


Parasitology ◽  
1977 ◽  
Vol 75 (1) ◽  
pp. 101-109 ◽  
Author(s):  
J. R. Shaw ◽  
D. A. Erasmus

A simple technique for the maintenance in vitro of mature Schistosoma mansoni is described and critically assessed at the ultrastructural level. Females were cultured for 4–6 days with no apparent ultrastructural change, but after this period changes appeared in the cells of the ovary and vitelline gland. At a later stage (10–12 days) lipid bodies appeared in the parenchyma cells. These changes occurred in worms which were active, paired with males and were egg–laying. Thus the activity, pairing behaviour and egg–laying characteristics are not adequate to reveal the true morphological condition and presumably the physiological and biochemical status of cultured worms.This technique was used to study the effect of Astiban on females and the results were compared with worms treated in vivo. Astiban concentrations greater than 30 µg/ml killed worms within 7–20 h and acted non–selectively. Astiban at low concentrations (10µg/ml) during short–term culture (1–3 h) resulted in a selective action of the drug on maturing vitelline cells. Thus, although the degree of cell damage caused by drug treatment was more severe and occurred earlier than the effects observed in worms cultured in vitro without drugs, both treatments resulted in differential cell death.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2153
Author(s):  
Ming Yang ◽  
Kwok-Fai So ◽  
Wai-Ching Lam ◽  
Amy Cheuk Yin Lo

Retinitis pigmentosa (RP) is a leading cause of inherited retinal degeneration, with more than 60 gene mutations. Despite the genetic heterogenicity, photoreceptor cell damage remains the hallmark of RP pathology. As a result, RP patients usually suffer from reduced night vision, loss of peripheral vision, decreased visual acuity, and impaired color perception. Although photoreceptor cell death is the primary outcome of RP, the underlying mechanisms are not completely elucidated. Ferroptosis is a novel programmed cell death, with characteristic iron overload and lipid peroxidation. Recent studies, using in vitro and in vivo RP models, discovered the involvement of ferroptosis-associated cell death, suggesting a possible new mechanism for RP pathogenesis. In this review, we discuss the association between ferroptosis and photoreceptor cell damage, and its implication in the pathogenesis of RP. We propose that ferroptotic cell death not only opens up a new research area in RP, but may also serve as a novel therapeutic target for RP.


2006 ◽  
Vol 54 (3) ◽  
pp. 351-358 ◽  
Author(s):  
P. Pepó

Plant regeneration via tissue culture is becoming increasingly more common in monocots such as maize (Zea mays L.). Pollen (gametophytic) selection for resistance to aflatoxin in maize can greatly facilitate recurrent selection and the screening of germplasm for resistance at much less cost and in a shorter time than field testing. In vivo and in vitro techniques have been integrated in maize breeding programmes to obtain desirable agronomic attributes, enhance the genes responsible for them and speed up the breeding process. The efficiency of anther and tissue cultures in maize and wheat has reached the stage where they can be used in breeding programmes to some extent and many new cultivars produced by genetic manipulation have now reached the market.


2020 ◽  
Author(s):  
K. Zerrouki ◽  
N. Djebli ◽  
L. Gadouche ◽  
I. Erdogan Orhan ◽  
F. SezerSenol Deniz ◽  
...  

Nowadays, because of the industrialization, a lot of contaminant were available ; the consequences of this availability are apparition of diseases including neurodegeneration. Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. This study is based on the effect of the Boswellic resin, which is from a medicinal plant and known for its antioxidant effects on nerve cell damage. The objective of this work was to evaluate the in vitro and in vivo effects of the Boswellic resin on anticholinesterase activity and Alzheimer’s disease (AD) induced by D-galactose and aluminum tetrachloride in Swiss mice. Chemical composition of the resin essential oil was identified by the CG-MS analysis. The antioxidant activity was also assessed by the DMPD and metal chelation methods. In order to understand the mechanism of memory improvement, the acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, inhibitory assays were performed. In vivo part of the study was achieved on Swiss mice divided into four groups: control, AD model, treated AD, and treated control group. The identification of chemical composition by CG-MS reach the 89.67% of the total extract compounds presented some very important molecules (p-Cymene, n-Octyl acetate, α-Pinene…). The present study proves that Boswellic resin improves memory and learning in treated Alzheimer’s group, modulates the oxidative stress and be involved in the protective effect against amyloid deposition and neurodegeneration, and stimulates the immune system in mice’s brain.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3005
Author(s):  
Kanchan Bhardwaj ◽  
Ana Sanches Silva ◽  
Maria Atanassova ◽  
Rohit Sharma ◽  
Eugenie Nepovimova ◽  
...  

Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.


Author(s):  
Hongli Zhou ◽  
Minyu Zhou ◽  
Yue Hu ◽  
Yanin Limpanon ◽  
Yubin Ma ◽  
...  

AbstractAngiostrongylus cantonensis (AC) can cause severe eosinophilic meningitis or encephalitis in non-permissive hosts accompanied by apoptosis and necroptosis of brain cells. However, the explicit underlying molecular basis of apoptosis and necroptosis upon AC infection has not yet been elucidated. To determine the specific pathways of apoptosis and necroptosis upon AC infection, gene set enrichment analysis (GSEA) and protein–protein interaction (PPI) analysis for gene expression microarray (accession number: GSE159486) of mouse brain infected by AC revealed that TNF-α likely played a central role in the apoptosis and necroptosis in the context of AC infection, which was further confirmed via an in vivo rescue assay after treating with TNF-α inhibitor. The signalling axes involved in apoptosis and necroptosis were investigated via immunoprecipitation and immunoblotting. Immunofluorescence was used to identify the specific cells that underwent apoptosis or necroptosis. The results showed that TNF-α induced apoptosis of astrocytes through the RIP1/FADD/Caspase-8 axis and induced necroptosis of neurons by the RIP3/MLKL signalling pathway. In addition, in vitro assay revealed that TNF-α secretion by microglia increased upon LSA stimulation and caused necroptosis of neurons. The present study provided the first evidence that TNF-α was secreted by microglia stimulated by AC infection, which caused cell death via parallel pathways of astrocyte apoptosis (mediated by the RIP1/FADD/caspase-8 axis) and neuron necroptosis (driven by the RIP3/MLKL complex). Our research comprehensively elucidated the mechanism of cell death after AC infection and provided new insight into targeting TNF-α signalling as a therapeutic strategy for CNS injury.


Sign in / Sign up

Export Citation Format

Share Document