Predicting the risk of an endemic focus of Leishmania tropica becoming established in south-western Europe through the presence of its main vector, Phlebotomus sergenti Parrot, 1917

Parasitology ◽  
2013 ◽  
Vol 140 (11) ◽  
pp. 1413-1421 ◽  
Author(s):  
S. D. BARÓN ◽  
F. MORILLAS-MÁRQUEZ ◽  
M. MORALES-YUSTE ◽  
V. DÍAZ-SÁEZ ◽  
M. GÁLLEGO ◽  
...  

SUMMARYThe aim of the study was the construction of risk maps for exposure to Phlebotomus sergenti, the main vector of Leishmania tropica, with a view to identifying hot spots for the potential establishment of this parasite in the southwest of Europe. Data were collected on the presence/absence of this vector and the ecological and climatic characteristics of 662 sampling sites located in the southeast, centre and northeast of the Iberian Peninsula (south-western Europe). The environmental factors associated with the distribution of P. sergenti were determined. The best predictors for the presence of this dipteran were ‘altitude’, ‘land use’, ‘land surface temperature’, ‘aspect’, ‘adjacent land cover’, ‘absence of vegetation in wall’ and the ‘absence of PVC pipes in the drainage holes of retaining walls’. Risk maps for exposure to the vector were drawn up based on these variables. The validation of the predictive risk model confirmed its usefulness in the detection of areas with a high risk of P. sergenti being present. These locations represent potential hot spots for an autochthonous focus of L. tropica becoming established. The risk maps produced for P. sergenti presence revealed several areas in the centre and south of the Iberian Peninsula to be the most prone to this process, which would make it possible for the disease to enter south-western Europe.

Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


2020 ◽  
Vol 12 (3) ◽  
pp. 941
Author(s):  
Di Liu ◽  
Hai Chen ◽  
Hang Zhang ◽  
Tianwei Geng ◽  
Qinqin Shi

Land surface elements, such as land use, are in constant change and dynamically balanced, driving changes in global ecological processes and forming the regional differentiation of surface landscapes, which causes many ecological risks under multiple sources of stress. The landscape pattern index can quickly identify the disturbance caused by the vulnerability of the ecosystem itself, thus providing an effective method to support the spatial heterogeneity of landscape ecological risk. A landscape ecological risk model based on the degree of interference and fragility was constructed and spatiotemporal differentiation of risk between 1980 and 2017 in Shaanxi Province was analyzed. The spatiotemporal migration of risk was demonstrated from the perspective of geomorphological regionalization and risk gravity. Several conclusions were drawn: The risk of Shaanxi Province first increased and then decreased, at the same time, the spatial differentiation of landscape ecological risk was very significant. The ecological risk presented a significant positive correlation but the degree of autocorrelation decreased. The risk of the Qinba Mountains was low and the risk of the Guanzhong Plain and Han River basin was high. The risk of Loess Plateau and sandstorm transition zone decreased greatly and their risk gravities shifted to the southwest. The gravity of the Guanzhong Plain and Qinling Mountains had a northward trend, while the gravity of the Han River basin and Daba Mountains shifted to the southeast. In the analysis of typical regions, there were different relationships between morphological indicators and risk indexes under different geomorphological features. The appropriate engineering measures and landscape management for different geomorphological regionalization were suggested for effective reduction of ecological risks.


2021 ◽  
Author(s):  
Xabier Irujo

The Battle of Rencesvals is the one of the most dramatic historical event of the entire eighth century, not only in Vasconia but in Western Europe. This monograph examines the battle as more than a single military encounter, but instead as part of a complex military and political conquest that began after the conquest of the Iberian Peninsula in 711 and culminated with the creation of the Kingdom of Pamplona in 824. The battle had major (and largely underappreciated) consequences for the internal structure of the Carolingian Empire. It also enjoyed a remarkable legacy as the topic of one of the oldest European epic poems, La Chanson de Roland. The events that took place in the Pyrenean pass of Rencesvals (Errozabal) on 15 August 778 defined the development of the Carolingian world, and lie at the heart of the early medieval contribution to the later medieval period.


2015 ◽  
Vol 12 (12) ◽  
pp. 13019-13067
Author(s):  
A. Barella-Ortiz ◽  
J. Polcher ◽  
P. de Rosnay ◽  
M. Piles ◽  
E. Gelati

Abstract. L-Band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm. The work exposed compares brightness temperatures measured by the Soil Moisture and Ocean Salinity (SMOS) mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The latter were estimated using a radiative transfer model and state variables from two land surface models: (i) ORganising Carbon and Hydrology In Dynamic EcosystEms (ORCHIDEE) and (ii) Hydrology – Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL). The radiative transfer model used is the Community Microwave Emission Model (CMEM). A good agreement in the temporal evolution of measured and modelled brightness temperatures is observed. However, their spatial structures are not consistent between them. An Empirical Orthogonal Function analysis of the brightness temperature's error identifies a dominant structure over the South-West of the Iberian Peninsula which evolves during the year and is maximum in Fall and Winter. Hypotheses concerning forcing induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for it at the moment. Further hypotheses are proposed at the end of the paper.


2017 ◽  
Vol 31 (5) ◽  
pp. 618-630 ◽  
Author(s):  
Ana García-Vázquez ◽  
Ana Cristina Pinto Llona ◽  
Aurora Grandal-d’Anglade

2009 ◽  
Vol 10 (4) ◽  
pp. 1026-1039 ◽  
Author(s):  
Benjamin R. Lintner ◽  
J. David Neelin

Abstract An idealized prototype for the location of the margins of tropical land region convection zones is extended to incorporate the effects of soil moisture and associated evaporation. The effect of evaporation, integrated over the inflow trajectory into the convection zone, is realized nonlocally where the atmosphere becomes favorable to deep convection. This integrated effect produces “hot spots” of land surface–atmosphere coupling downstream of soil moisture conditions. Overall, soil moisture increases the variability of the convective margin, although how it does so is nontrivial. In particular, there is an asymmetry in displacements of the convective margin between anomalous inflow and outflow conditions that is absent when soil moisture is not included. Furthermore, the simple cases presented here illustrate how margin sensitivity depends strongly on the interplay of factors, including net top-of-the-atmosphere radiative heating, the statistics of inflow wind, and the convective parameterization.


2018 ◽  
Vol 22 (7) ◽  
pp. 3863-3882 ◽  
Author(s):  
Fuxing Wang ◽  
Jan Polcher ◽  
Philippe Peylin ◽  
Vladislav Bastrikov

Abstract. River discharge plays an important role in earth's water cycle, but it is difficult to estimate due to un-gauged rivers, human activities and measurement errors. One approach is based on the observed flux and a simple annual water balance model (ignoring human processes) for un-gauged rivers, but it only provides annual mean values which is insufficient for oceanic modelings. Another way is by forcing a land surface model (LSM) with atmospheric conditions. It provides daily values but with uncertainties associated with the models. We use data assimilation techniques by merging the modeled river discharges by the ORCHIDEE (without human processes currently) LSM and the observations from the Global Runoff Data Centre (GRDC) to obtain optimized discharges over the entire basin. The “model systematic errors” and “human impacts” (dam operation, irrigation, etc.) are taken into account by an optimization parameter x (with annual variation), which is applied to correct model intermediate variable runoff and drainage over each sub-watershed. The method is illustrated over the Iberian Peninsula with 27 GRDC stations over the period 1979–1989. ORCHIDEE represents a realistic discharge over the north of the Iberian Peninsula with small model systematic errors, while the model overestimates discharges by 30–150 % over the south and northeast regions where the blue water footprint is large. The normalized bias has been significantly reduced to less than 30 % after assimilation, and the assimilation result is not sensitive to assimilation strategies. This method also corrects the discharge bias for the basins without observations assimilated by extrapolating the correction from adjacent basins. The “correction” increases the interannual variability in river discharge because of the fluctuation of water usage. The E (P−E) of GLEAM (Global Land Evaporation Amsterdam Model, v3.1a) is lower (higher) than the bias-corrected value, which could be due to the different P forcing and probably the missing processes in the GLEAM model.


Author(s):  
Maristella Botticini ◽  
Zvi Eckstein

This chapter assesses the argument that both their exclusion from craft and merchant guilds and usury bans on Christians segregated European Jews into moneylending during the Middle Ages. Already during the twelfth and thirteenth centuries, moneylending was the occupation par excellence of the Jews in England, France, and Germany and one of the main professions of the Jews in the Iberian Peninsula, Italy, and other locations in western Europe. Based on the historical information and the economic theory presented in earlier chapters, the chapter advances an alternative explanation that is consistent with the salient features that mark the history of the Jews: the Jews in medieval Europe voluntarily entered and later specialized in moneylending because they had the key assets for being successful players in credit markets—capital, networking, literacy and numeracy, and contract-enforcement institutions.


Sign in / Sign up

Export Citation Format

Share Document