scholarly journals Electron-Beam Evolution in Partially Ionized Hydrogenic Plasma with Return Currents

1994 ◽  
Vol 142 ◽  
pp. 729-734
Author(s):  
D. V. Syniavskii ◽  
V. V. Zharkova

AbstractThis paper presents the kinetic equation solution for beam electrons injected during solar flares from the corona to the chromosphere, consisting of hydrogenic plasma with partial ionization. The electrons are considered to lose their energy both in collisional processes with the charged and neutral species of ambient plasma and in ohmic heating by return currents induced in the plasma by beam electrons. The evolution of the energy and angular distributions of energetic electrons is calculated as functions of the column density. The bulk of the electron-beam energy stored in low-energy electrons is shown to be lost in the ambient plasma heating, less via Coulomb collisions at the lower corona and more via ohmic dissipation at the upper chromosphere. More energetic electrons with energies above 120 keV can reach the chromospheric levels with a weak ionized plasma, where a decrease of the Coulomb collisions and the induced electric field of a return current produce beams as well directed as on the top boundary. The X-ray bremsstrahlung polarization is shown to be positive in the range 5%-10%. It is very sensitive to the emergent photon energies below 40 keV and to angles of view for all of the X-ray radiation range.Subject headings: acceleration of particles — plasmas — Sun: flares — Sun: X-rays, gamma rays

1985 ◽  
Vol 107 ◽  
pp. 509-512
Author(s):  
Dean F. Smith

Up until about five years ago all models for hard X-ray bursts consisted of streaming nonthermal electrons interacting with an ambient plasma (Brown 1975). Even in its most efficient form of thick-target emission in which electrons are stopped in the ambient plasma, this type of model is very inefficient because the electrons lose about 105 times more energy in Coulomb collisions with the ambient plasma than in X-rays resulting from bremsstrahlung. As a result, according to the latest estimates, at least 20% of the dissipated flare energy must go into accelerated electrons at the peak of the impulsive phase (Duijveman et al. 1982). Stimulated by observations of hard X-rays with thermal spectra (Crannel et al. 1978; Elcan 1978), analysis of a thermal model in which all the electrons in a given volume are heated to a temperature Te = 108K was begun (Brown et al. 1979; Smith and Lilliequist 1979; Vlahos and Papadopoulos 1979). It was recognized from the beginning that some electrons in the tail of the distribution would escape through the conduction fronts formed and mimic nonthermal streaming electrons. This thermal model with loss of electrons or dissipation became known as the dissipative thermal model (Emslie and Vlahos 1980). If the escaping electrons are not replenished, they will cease to make a contribution after a fraction of a second and the source will become a pure thermal source. It will be shown below that collisional replenishment (Smith and Brown 1980) is too slow.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


2020 ◽  
Vol 493 (4) ◽  
pp. 5761-5772 ◽  
Author(s):  
Takumi Ohmura ◽  
Mami Machida ◽  
Kenji Nakamura ◽  
Yuki Kudoh ◽  
Ryoji Matsumoto

ABSTRACT We present the results of two-temperature magnetohydrodynamic simulations of the propagation of sub-relativistic jets of active galactic nuclei. The dependence of the electron and ion temperature distributions on the fraction of electron heating, fe, at the shock front is studied for fe = 0, 0.05, and 0.2. Numerical results indicate that in sub-relativistic, rarefied jets, the jet plasma crossing the terminal shock forms a hot, two-temperature plasma in which the ion temperature is higher than the electron temperature. The two-temperature plasma expands and forms a backflow referred to as a cocoon, in which the ion temperature remains higher than the electron temperature for longer than 100 Myr. Electrons in the cocoon are continuously heated by ions through Coulomb collisions, and the electron temperature thus remains at Te > 109 K in the cocoon. X-ray emissions from the cocoon are weak because the electron number density is low. Meanwhile, X-rays are emitted from the shocked intracluster medium (ICM) surrounding the cocoon. Mixing of the jet plasma and the shocked ICM through the Kelvin–Helmholtz instability at the interface enhances X-ray emissions around the contact discontinuity between the cocoon and shocked ICM.


Some of these could also be operated in the energy range above lOMeV for experiments designed to determine at which energy level radioactivity can be induced in the irradiated medium. A linac with a maximum energy of 25 MeV was commissioned for the U.S. Army Natick Research and Development Labora­ tories in 1963. Its beam power was 6.5 kW at an electron energy of 10 MeV, 18 kW at 24 MeV. Assuming 100% efficiency, a 1-kW beam can irradiate 360 kg of product with a dose of 10 kGy/h. The efficiency of electron accelerators is higher than that of gamma sources because the electron beam can be directed at the product, whereas the gamma sources emit radiation in all directions. An efficiency of 50% is a realistic assumption for accelerator facilities. With that and 6.5 kW beam power an accelerator of the type built for the Natick laboratories can process about 1.2t/h at 10 kGy. In Odessa in the former Soviet Union, now in the Ukraine, two 20-kW accelerators with an energy of 1.4 MeV installed next to a grain elevator went into operation in 1983. Each accelerator has the capacity to irradiate 200 t of wheat per hour with a dose of 200 Gy for insect disinfestation. This corresponds to a beam utilization of 56% (9). In France, a facility for electron irradiation of frozen deboned chicken meat commenced operation at Berric near Vannes (Brittany) in late 1986. The purpose of irradiation is to improve the hygienic quality of the meat by destroying salmonella and other disease-causing (pathogenic) microorganisms. The electron beam accelerator is a 7 MeV/10 kW Cassitron built by CGR-MeV (10). An irradiation facility of this type is shown in Figure . Because of their relatively low depth of penetration electron beams cannot be used for the irradiation of animal carcasses, large packages, or other thick materials. However, this difficulty can be overcome by converting the electrons to x-rays. As indicated in Figure 9, this can be done by fitting a water-cooled metal plate to the scanner. Whereas in conventional x-ray tubes the conversion of electron energy to x-ray energy occurs only with an efficiency of about %, much higher efficiencies can be achieved in electron accelerators. The conversion efficiency depends on the material of the converter plate (target) and on the electron energy. Copper converts 5-MeV electrons with about 7% efficiency, 10-MeV electrons with 12% efficiency. A tungsten target can convert 5-MeV electrons with about 20%, 10-MeV electrons with 30% efficiency. (Exact values depend on target thickness.) In contrast to the distinct gamma radiation energy emitted from radionuclides and to the monoenergetic electrons produced by accelerators, the energy spectrum of x-rays is continuous from the value equivalent to the energy of the bombarding electrons to zero. The intensity of this spectrum peaks at about one-tenth of the maximum energy value. The exact location of the intensity peak depends on the thickness of the converter plate and on some other factors. As indicated in Figure

1995 ◽  
pp. 40-40

2007 ◽  
Vol 22 (23) ◽  
pp. 4270-4279
Author(s):  
A. BACCI ◽  
C. MAROLI ◽  
V. PETRILLO ◽  
L. SERAFNI ◽  
M. FERRARIO

The interaction between high-brilliance electron beams and counter-propagating laser pulses produces X rays via Thomson back-scattering. If the laser source is long and intense enough, the electrons of the beam can bunch and a regime of collective effects can establish. In this case of dominating collective effects, the FEL instability can develop and the system behaves like a free-electron laser based on an optical undulator. Coherent X-rays can be irradiated, with a bandwidth very much thinner than that of the corresponding incoherent emission. The emittance of the electron beam and the distribution of the laser energy are the principal quantities that limit the growth of the X-ray signal. In this work we analyse with a 3-D code the transverse effects in the emission produced by a relativistic electron beam when it is under the action of an optical laser pulse and the X-ray spectra obtained. The scalings typical of the optical wiggler, characterized by very short gain lengths and overall time durations of the process make possible considerable emission also with emittance of the order of 1mm mrad.


1998 ◽  
Vol 6 (10) ◽  
pp. 10-13
Author(s):  
Don Chernoff

In this third and final installment on x-ray analysis in the environmental and low vacuum SEM, I will present experimental methods for measuring beam scatter. In my previous two articles I discussed how operating conditions detemine beam scatter. It was shown that the type of gas used, the gas pressure in the chamber, the working distance or beam gas path length, and the accelerating voltage all have an effect on how much the electron beam scatters. I also discussed how the beam scatter influences x-ray results by producing x-rays beyond the area of the primary beam. Furthermore, I showed how software models could be used to determine the amount of beam scatter based on different combinations of the four variables (pressure, gas, working distance, and kV).


2007 ◽  
Vol 13 (5) ◽  
pp. 354-357 ◽  
Author(s):  
Raynald Gauvin

The derivation of a universal equation to compute the range of emitted X rays is presented for homogeneous bulk materials. This equation is based on two fundamental assumptions: the φ(ρz) curve of X-ray generation is constant and the ratio of the emitted to the generated X-ray range is equal to the ratio of the emitted to the generated X-ray intensity. An excellent agreement is observed with data obtained from Monte Carlo simulations of 200,000 electron trajectories in C, Al, Cu, Ag, Au, and an Fe–B alloy with boron weight fractions equal to 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99, performed with the electron beam energy varied from 1 to 30 keV in 1-keV steps. When the ratio of the generated X-ray range to the photon mean free path is much smaller than one, the emission X-ray range is equal to the generated X-ray range, but when this ratio is much greater than one, the emission X-ray range is constant and is given by the product of the effective photon mean free path multiplied by the sine of the take-off angle.


2021 ◽  
Vol 11 (22) ◽  
pp. 10768
Author(s):  
Ye Chen ◽  
Frank Brinker ◽  
Winfried Decking ◽  
Matthias Scholz ◽  
Lutz Winkelmann

Sub-ångström working regime refers to a working state of free-electron lasers which allows the generation of hard X-rays at a photon wavelength of 1 ångström and below, that is, a photon energy of 12.5 keV and above. It is demonstrated that the accelerators of the European X-ray Free-Electron Laser can provide highly energetic electron beams of up to 17.5 GeV. Along with long variable-gap undulators, the facility offers superior conditions for exploring self-amplified spontaneous emission (SASE) in the sub-ångström regime. However, the overall FEL performance relies quantitatively on achievable electron beam qualities through a kilometers-long accelerator beamline. Low-emittance electron beam production and the associated start-to-end beam physics thus becomes a prerequisite to dig in the potentials of SASE performance towards higher photon energies. In this article, we present the obtained results on electron beam qualities produced with different accelerating gradients of 40 MV/m–56 MV/m at the cathode, as well as the final beam qualities in front of the undulators via start-to-end simulations considering realistic conditions. SASE studies in the sub-ångström regime, using optimized electron beams, are carried out at varied energy levels according to the present state of the facility, that is, a pulsed mode operating with a 10 Hz-repetition 0.65 ms-long bunch train energized to 14 GeV and 17.5 GeV. Millijoule-level SASE intensity is obtained at a photon energy of 25 keV at 14 GeV electron beam energy using a gain length of about 7 m. At 17.5 GeV, half-millijoule lasing is achieved at 40 keV. Lasing at up to 50 keV is demonstrated with pulse energies in the range of a few hundreds and tens of microjoules with existing undulators and currently achievable electron beam qualities.


1972 ◽  
Vol 14 ◽  
pp. 761-762
Author(s):  
G. Elwert ◽  
E. Haug

The polarization and angular distribution of solar hard X radiation above 10 keV was calculated under the assumption that the X rays originate as bremsstrahlung from energetic electrons moving in a preferred direction. The source electrons are supposed to have a power-law spectrum. These conditions are to be expected in the impulsive phase of an X-ray burst. The spiral orbits of the electrons around the magnetic field lines are taken into account.


2019 ◽  
Vol 20 (20) ◽  
pp. 5140 ◽  
Author(s):  
Nelly Babayan ◽  
Bagrat Grigoryan ◽  
Lusine Khondkaryan ◽  
Gohar Tadevosyan ◽  
Natalya Sarkisyan ◽  
...  

Rapidly evolving laser technologies have led to the development of laser-generated particle accelerators as an alternative to conventional facilities. However, the radiobiological characteristics need to be determined to enhance their applications in biology and medicine. In this study, the radiobiological effects of ultrashort pulsed electron beam (UPEB) and X-ray radiation in human lung fibroblasts (MRC-5 cell line) exposed to doses of 0.1, 0.5, and 1 Gy are compared. The changes of γH2AX foci number as a marker of DNA double-strand breaks (DSBs) were analyzed. In addition, the micronuclei induction and cell death via apoptosis were studied. We found that the biological action of UPEB-radiation compared to X-rays was characterized by significantly slower γH2AX foci elimination (with a dose of 1 Gy) and strong apoptosis induction (with doses of 0.5 and 1.0 Gy), accompanied by a slight increase in micronuclei formation (dose of 1 Gy). Our data suggest that UPEB radiation produces more complex DNA damage than X-ray radiation, leading to cell death rather than cytogenetic disturbance.


Sign in / Sign up

Export Citation Format

Share Document