scholarly journals A Study of the Decay Phase of an X-Ray Flare on Algol

1989 ◽  
Vol 104 (2) ◽  
pp. 123-126
Author(s):  
R. Mewe ◽  
G.H.J. van den Oord ◽  
J. Jakimiec

AbstractWe have re-analyzed the X-ray flare on Algol which was observed with EXOSAT (White et al. (1986)). The common practice of estimating loop volume and length from the decay time of the flare is discussed extensively. We show that during the decay phase of the flare both scaling laws for coronal loops are valid. This implies a unique determination of loop volume and length and allows a check whether additional heating occurs in the decay phase of a flare.

2016 ◽  
Vol 12 ◽  
pp. 2211-2215 ◽  
Author(s):  
Reji Thomas ◽  
Nobuyuki Tamaoki

Single crystal X-ray diffraction has been used as one of the common methods for the unambiguous determination of the absolute stereostructure of chiral molecules. However, this method is limited to molecules containing heavy atoms or to molecules with the possibility of functionalization with heavy elements or chiral internal references. Herein, we report the determination of the absolute stereostructure of the enantiomers of molecule (E)-2, which lacks the possibility of functionalization, using a reverse method, i.e., defunctionalization of its precursor of known stereostructure with bromine substitution (S-(−)-(E)-1). A reductive debromination of S-(−)-(E)-1 results in formation of one of the enantiomers of (E)-2. Using a combination of HPLC and CD spectroscopy we could safely assign the stereostructure of one of the enantiomers of (E)-2, the reduced product R-(−)-(E)-1.


1986 ◽  
Vol 7 ◽  
pp. 467-470
Author(s):  
Osmi Vilhu

AbstractCoronal scaling laws and magnetic braking are discussed. The importance of future EUV and X-ray spectroscopy missions is emphasized.


2014 ◽  
Vol 70 (a1) ◽  
pp. C690-C690
Author(s):  
Fiodar Kurdzesau ◽  
Arkadiy Simonov ◽  
Matthias Schneebeli ◽  
Volker Pilipp ◽  
Thomas Weber

The use of 2D position and energy sensitive hybrid pixel Pilatus detectors allows performing energy-dispersive analysis of Bragg reflections [1]. This significantly improves the classical Laue experiments enabling the unique determination of the crystal lattice and resolving the higher order harmonics. It allows quantitative crystal structure determination using the Laue method without having any priory information about the crystal [2]. Such energy-dispersive Laue diffraction (EDLD) experiments can be performed with a white X-ray beam either from a synchrotron source or from conventional X-ray tubes. The second approach looks less profitable due to its lower irradiation intensity, but this can be compensated considering the better control of white beam spectra by applying different voltage/current settings during the tube operation. Thus, one can efficiently combine the primary beam and XRD measurements using the same Pilatus detector. This allows the implementation of the energy resolved (color Laue) method for any conventional XRD diffractometer equipped with a Pilatus detection system. In the present work EDLD experiments with a conventional X-ray tube were combined with corresponding primary beam measurements using a 300K Pilatus detector tuned for operation within an energy range of 4-25 keV at energy resolution <0.12 keV. Such a combination simplifies several data correction procedures (the spectral intensity distribution, the sample absorption etc.) significantly. Following our developed intensity correction protocols the structure refinement of a reference quartz sample could be achieved with R-factor <0.10. Possible applications of this method (e.g. quantitative XRD studies with stationary crystals) and the details for its further development will be discussed.


1994 ◽  
Vol 144 ◽  
pp. 185-187
Author(s):  
S. Orlando ◽  
G. Peres ◽  
S. Serio

AbstractWe have developed a detailed siphon flow model for coronal loops. We find scaling laws relating the characteristic parameters of the loop, explore systematically the space of solutions and show that supersonic flows are impossible for realistic values of heat flux at the base of the upflowing leg.


Author(s):  
H.J. Dudek

The chemical inhomogenities in modern materials such as fibers, phases and inclusions, often have diameters in the region of one micrometer. Using electron microbeam analysis for the determination of the element concentrations one has to know the smallest possible diameter of such regions for a given accuracy of the quantitative analysis.In th is paper the correction procedure for the quantitative electron microbeam analysis is extended to a spacial problem to determine the smallest possible measurements of a cylindrical particle P of high D (depth resolution) and diameter L (lateral resolution) embeded in a matrix M and which has to be analysed quantitative with the accuracy q. The mathematical accounts lead to the following form of the characteristic x-ray intens ity of the element i of a particle P embeded in the matrix M in relation to the intensity of a standard S


Author(s):  
R. J. Narconis ◽  
G. L. Johnson

Analysis of the constituents of renal and biliary calculi may be of help in the management of patients with calculous disease. Several methods of analysis are available for identifying these constituents. Most common are chemical methods, optical crystallography, x-ray diffraction, and infrared spectroscopy. The application of a SEM with x-ray analysis capabilities should be considered as an additional alternative.A scanning electron microscope equipped with an x-ray “mapping” attachment offers an additional dimension in its ability to locate elemental constituents geographically, and thus, provide a clue in determination of possible metabolic etiology in calculus formation. The ability of this method to give an undisturbed view of adjacent layers of elements in their natural state is of advantage in determining the sequence of formation of subsequent layers of chemical constituents.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Author(s):  
Stuart McKernan ◽  
C. Barry Carter

The determination of the absolute polarity of a polar material is often crucial to the understanding of the defects which occur in such materials. Several methods exist by which this determination may be performed. In bulk, single-domain specimens, macroscopic techniques may be used, such as the different etching behavior, using the appropriate etchant, of surfaces with opposite polarity. X-ray measurements under conditions where Friedel’s law (which means that the intensity of reflections from planes of opposite polarity are indistinguishable) breaks down can also be used to determine the absolute polarity of bulk, single-domain specimens. On the microscopic scale, and particularly where antiphase boundaries (APBs), which separate regions of opposite polarity exist, electron microscopic techniques must be employed. Two techniques are commonly practised; the first [1], involves the dynamical interaction of hoLz lines which interfere constructively or destructively with the zero order reflection, depending on the crystal polarity. The crystal polarity can therefore be directly deduced from the relative intensity of these interactions.


Author(s):  
J N Chapman ◽  
W A P Nicholson

Energy dispersive x-ray microanalysis (EDX) is widely used for the quantitative determination of local composition in thin film specimens. Extraction of quantitative data is usually accomplished by relating the ratio of the number of atoms of two species A and B in the volume excited by the electron beam (nA/nB) to the corresponding ratio of detected characteristic photons (NA/NB) through the use of a k-factor. This leads to an expression of the form nA/nB = kAB NA/NB where kAB is a measure of the relative efficiency with which x-rays are generated and detected from the two species.Errors in thin film x-ray quantification can arise from uncertainties in both NA/NB and kAB. In addition to the inevitable statistical errors, particularly severe problems arise in accurately determining the former if (i) mass loss occurs during spectrum acquisition so that the composition changes as irradiation proceeds, (ii) the characteristic peak from one of the minority components of interest is overlapped by the much larger peak from a majority component, (iii) the measured ratio varies significantly with specimen thickness as a result of electron channeling, or (iv) varying absorption corrections are required due to photons generated at different points having to traverse different path lengths through specimens of irregular and unknown topography on their way to the detector.


Sign in / Sign up

Export Citation Format

Share Document