VP57 Using Capital Bids For Hospital-Based Health Technology Assessment

2019 ◽  
Vol 35 (S1) ◽  
pp. 89-89
Author(s):  
Jamie Erskine ◽  
Anastasia Chalkidou

IntroductionThe Evelina London Children's Hospital (ELCH) is undergoing a period of growth, including a new building planned to be completed within the next five years. Due to limited space and ambitions to be a state-of-the-art hospital, Horizon Scanning (HS) was considered important to ‘future-proof’ new facilities. As the aim of HS is to identify signals of coming change, ‘scanning’ the previous five years’ trends may be beneficial to an iterative HS methodology. Thus, it was thought that capital bids could provide a range of useful information required to make procurement decisions.MethodsKing's Technology Evaluation Centre (KiTEC) provided hospital-based HTA and HS support for the expansion of a London-based paediatric hospital. KiTEC focused on imaging technology due to its large spatial requirements and high-costs and assessed all capital bids made over the previous five years. A capital bidding system is used within GSTT to allocate funding for medical equipment that costs more than GBP5000 (USD 6540.70). Information was collated for all imaging equipment bid for over the previous five years and assessed for trends in imaging modalities and purchase costs.ResultsA total of 135 bids were made in the period 2013-2018, eight of which were by ECLH. Bids for ultrasound equipment were most common and rose over the period. Bids for CT scanners also rose, while bids for MRI scanners and x-ray technology were consistent and bids for fluoroscopy fell. The total cost of imaging bids over the interval rose steadily from GBP5.4 million to GBP6.9 million.ConclusionsDue to the lifespan of imaging technology, some trends may not emerge within a five year window. While some interesting findings were made, a ten to fifteen year period may require to be scanned for a robust analysis. This methodology is best applied in an iterative fashion along with standard HS techniques.

Author(s):  
J.M. Titchmarsh

The advances in recent years in the microanalytical capabilities of conventional TEM's fitted with probe forming lenses allow much more detailed investigations to be made of the microstructures of complex alloys, such as ferritic steels, than have been possible previously. In particular, the identification of individual precipitate particles with dimensions of a few tens of nanometers in alloys containing high densities of several chemically and crystallographically different precipitate types is feasible. The aim of the investigation described in this paper was to establish a method which allowed individual particle identification to be made in a few seconds so that large numbers of particles could be examined in a few hours.A Philips EM400 microscope, fitted with the scanning transmission (STEM) objective lens pole-pieces and an EDAX energy dispersive X-ray analyser, was used at 120 kV with a thermal W hairpin filament. The precipitates examined were extracted using a standard C replica technique from specimens of a 2¼Cr-lMo ferritic steel in a quenched and tempered condition.


Author(s):  
Imre Pozsgai ◽  
Klara Erdöhalmi-Torok

The paintings by the great Hungarian master Mihaly Munkacsy (1844-1900) made in an 8-9 years period of his activity are deteriorating. The most conspicuous sign of the deterioration is an intensive darkening. We have made an attempt by electron beam microanalysis to clarify the causes of the darkening. The importance of a study like this is increased by the fact that a similar darkening can be observed on the paintings by Munkacsy’s contemporaries e.g Courbet and Makart. A thick brown mass the so called bitumen used by Munkacsy for grounding and also as a paint is believed by the art historians to cause the darkening.For this study, paint specimens were taken from the following paintings: “Studio”, “Farewell” and the “Portrait of the Master’s Wife”, all of them are the property of the Hungarian National Gallery. The paint samples were embedded in a polyester resin “Poly-Pol PS-230” and after grinding and polishing their cross section was used for x-ray mapping.


Author(s):  
Judith M. Brock ◽  
Max T. Otten

A knowledge of the distribution of chemical elements in a specimen is often highly useful. In materials science specimens features such as grain boundaries and precipitates generally force a certain order on mental distribution, so that a single profile away from the boundary or precipitate gives a full description of all relevant data. No such simplicity can be assumed in life science specimens, where elements can occur various combinations and in different concentrations in tissue. In the latter case a two-dimensional elemental-distribution image is required to describe the material adequately. X-ray mapping provides such of the distribution of elements.The big disadvantage of x-ray mapping hitherto has been one requirement: the transmission electron microscope must have the scanning function. In cases where the STEM functionality – to record scanning images using a variety of STEM detectors – is not used, but only x-ray mapping is intended, a significant investment must still be made in the scanning system: electronics that drive the beam, detectors for generating the scanning images, and monitors for displaying and recording the images.


2020 ◽  
Author(s):  
Pia Vervoorts ◽  
Stefan Burger ◽  
Karina Hemmer ◽  
Gregor Kieslich

The zeolitic imidazolate frameworks ZIF-8 and ZIF-67 harbour a series of fascinating stimuli responsive properties. Looking at their responsitivity to hydrostatic pressure as stimulus, open questions exist regarding the isotropic compression with non-penetrating pressure transmitting media. By applying a state-of-the-art high-pressure powder X-ray diffraction setup, we revisit the high-pressure behaviour of ZIF-8 and ZIF-67 up to <i>p</i> = 0.4 GPa in small pressure increments. We observe a drastic, reversible change of high-pressure powder X-ray diffraction data at <i>p</i> = 0.3 GPa, discovering large volume structural flexibility in ZIF-8 and ZIF-67. Our results imply a shallow underlying energy landscape in ZIF-8 and ZIF-67, an observation that might point at rich polymorphism of ZIF-8 and ZIF-67, similar to ZIF-4(Zn).<br>


2020 ◽  
Author(s):  
Pia Vervoorts ◽  
Stefan Burger ◽  
Karina Hemmer ◽  
Gregor Kieslich

The zeolitic imidazolate frameworks ZIF-8 and ZIF-67 harbour a series of fascinating stimuli responsive properties. Looking at their responsitivity to hydrostatic pressure as stimulus, open questions exist regarding the isotropic compression with non-penetrating pressure transmitting media. By applying a state-of-the-art high-pressure powder X-ray diffraction setup, we revisit the high-pressure behaviour of ZIF-8 and ZIF-67 up to <i>p</i> = 0.4 GPa in small pressure increments. We observe a drastic, reversible change of high-pressure powder X-ray diffraction data at <i>p</i> = 0.3 GPa, discovering large volume structural flexibility in ZIF-8 and ZIF-67. Our results imply a shallow underlying energy landscape in ZIF-8 and ZIF-67, an observation that might point at rich polymorphism of ZIF-8 and ZIF-67, similar to ZIF-4(Zn).<br>


Author(s):  
Carlo Grilletto ◽  
Steve Hsiung ◽  
Andrew Komrowski ◽  
John Soopikian ◽  
Daniel J.D. Sullivan ◽  
...  

Abstract This paper describes a method to "non-destructively" inspect the bump side of an assembled flip-chip test die. The method is used in conjunction with a simple metal-connecting "modified daisy chain" die and makes use of the fact that polished silicon is transparent to infra-red (IR) light. The paper describes the technique, scope of detection and examples of failure mechanisms successfully identified. It includes an example of a shorting anomaly that was not detectable with the state of the art X-ray equipment, but was detected by an IR emission microscope. The anomalies, in many cases, have shown to be the cause of failure. Once this has been accomplished, then a reasonable deprocessing plan can be instituted to proceed with the failure analysis.


2019 ◽  
Vol 19 (25) ◽  
pp. 2348-2356 ◽  
Author(s):  
Neng-Zhong Xie ◽  
Jian-Xiu Li ◽  
Ri-Bo Huang

Acetoin is an important four-carbon compound that has many applications in foods, chemical synthesis, cosmetics, cigarettes, soaps, and detergents. Its stereoisomer (S)-acetoin, a high-value chiral compound, can also be used to synthesize optically active drugs, which could enhance targeting properties and reduce side effects. Recently, considerable progress has been made in the development of biotechnological routes for (S)-acetoin production. In this review, various strategies for biological (S)- acetoin production are summarized, and their constraints and possible solutions are described. Furthermore, future prospects of biological production of (S)-acetoin are discussed.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Aysen Degerli ◽  
Mete Ahishali ◽  
Mehmet Yamac ◽  
Serkan Kiranyaz ◽  
Muhammad E. H. Chowdhury ◽  
...  

AbstractComputer-aided diagnosis has become a necessity for accurate and immediate coronavirus disease 2019 (COVID-19) detection to aid treatment and prevent the spread of the virus. Numerous studies have proposed to use Deep Learning techniques for COVID-19 diagnosis. However, they have used very limited chest X-ray (CXR) image repositories for evaluation with a small number, a few hundreds, of COVID-19 samples. Moreover, these methods can neither localize nor grade the severity of COVID-19 infection. For this purpose, recent studies proposed to explore the activation maps of deep networks. However, they remain inaccurate for localizing the actual infestation making them unreliable for clinical use. This study proposes a novel method for the joint localization, severity grading, and detection of COVID-19 from CXR images by generating the so-called infection maps. To accomplish this, we have compiled the largest dataset with 119,316 CXR images including 2951 COVID-19 samples, where the annotation of the ground-truth segmentation masks is performed on CXRs by a novel collaborative human–machine approach. Furthermore, we publicly release the first CXR dataset with the ground-truth segmentation masks of the COVID-19 infected regions. A detailed set of experiments show that state-of-the-art segmentation networks can learn to localize COVID-19 infection with an F1-score of 83.20%, which is significantly superior to the activation maps created by the previous methods. Finally, the proposed approach achieved a COVID-19 detection performance with 94.96% sensitivity and 99.88% specificity.


2021 ◽  
Vol 11 (7) ◽  
pp. 2971
Author(s):  
Siwei Tao ◽  
Congxiao He ◽  
Xiang Hao ◽  
Cuifang Kuang ◽  
Xu Liu

Numerous advances have been made in X-ray technology in recent years. X-ray imaging plays an important role in the nondestructive exploration of the internal structures of objects. However, the contrast of X-ray absorption images remains low, especially for materials with low atomic numbers, such as biological samples. X-ray phase-contrast images have an intrinsically higher contrast than absorption images. In this review, the principles, milestones, and recent progress of X-ray phase-contrast imaging methods are demonstrated. In addition, prospective applications are presented.


Sign in / Sign up

Export Citation Format

Share Document