scholarly journals Influence of microhabitat structure and disturbance on detection of native and non-native murids in logged and unlogged forests of northern Borneo

2014 ◽  
Vol 31 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Jeremy J. Cusack ◽  
Oliver R. Wearn ◽  
Henry Bernard ◽  
Robert M. Ewers

Abstract:Understanding the habitat preferences of native and non-native species may offer valuable insights into the mechanisms favouring invasion of disturbed habitats. This study investigated the determinants of trap-site detection probability of three native (Maxomys surifer, Maxomys whiteheadi and Leopoldamys sabanus) and one invasive (Rattus rattus) species of terrestrial murid (Muridae) in logged and unlogged forests of northern Borneo. We established four and two trapping grids in repeatedly logged and unlogged forest, respectively, for a total of 500 sampled trap sites. From these, we obtained 504 detections of the four species over 3420 trap nights. For each species, probability of detection was modelled as a function of both the structural components and disturbance level of the forest patch measured around each trap site. Each of the four species showed contrasting microhabitat preferences: M. surifer favoured increased canopy closure and intermediate ground and understorey vegetation cover; M. whiteheadi preferred increased ground vegetation cover and canopy height; L. sabanus favoured sites with larger amounts of coarse woody debris and less leaf litter; and R. rattus was associated with increased ground vegetation cover. Within logged forest, detection probabilities of the three native species did not vary significantly with level of patch disturbance, whereas that of the invasive R. rattus increased markedly in more degraded sites. This latter finding will have increasingly important implications when considering the rapid degradation of forests in the region, and the resulting expansion of suitable habitat for this competitive species.

1994 ◽  
Vol 59 ◽  
Author(s):  
D. Maddelein ◽  
B. Muys ◽  
J. Neirynck ◽  
G. Sioen

The  forest of Halle (560 ha), situated 20 km south of Brussels is covered by a  beech (Fagus sylvatica)  forest, locally mixed with secundary species (Tilia,  Fraxinus, Acer, Quercus,... ). In almost all  stands, herbal vegetation is dominated by bluebell (Hyacinthoides  non-scripta).     The research intended to classify 36 plots of different tree species  composition according to their site quality. Three classification methods  were compared: the first one based on the indicator value of the understorey  vegetation, a second one on the humus morphology and a last one on some  quantitative soil characteristics. According to the plant sociological site  classification, the plots have the same site quality. However, humus forms  differ apparently and significant differences were found in pH value and base  cation saturation of the soil, abundance and biomass of earthworms and  biomass of the ectorganic horizon. Tree species proved to be the main cause  of these differences.     The results illustrate that the herbal vegetation is not always a reliable  indicator of site quality. In the case of a homogeneous vegetation dominated  by one or more indifferent species, classification on humus morphology or  soil analysis are more appropriate. In the forest of Halle, the tree species  is probably the main cause of the observed differences in site quality.


2018 ◽  
Vol 10 (11) ◽  
pp. 4209 ◽  
Author(s):  
Ibrahim Salman ◽  
Leon Blaustein

Worldwide, urban areas are expanding both in size and number, which results in a decline in habitats suitable for urban flora and fauna. The construction of urban green features, such as green roofs, may provide suitable habitat patches for many species in urban areas. On green roofs, two approaches have been used to select plants—i.e., matching similar habitat to green roofs (habitat template approach) or identifying plants with suitable traits (plant trait approach). While both approaches may result in suitable habitats for arthropods, how arthropods respond to different combinations of plants is an open question. The aim of this study was to investigate how the structural complexity of different plant forms can affect the abundance and richness of arthropods on green roofs. The experimental design crossed the presence and absence of annuals with three Sedum sediforme (Jacq.) Pau (common name: stonecrops) treatments—i.e., uniformly disrupted Sedum, clumped disrupted Sedum, and no Sedum. We hypothesized that an increased structural diversity due to the coexistence of different life forms of plants on roofs is positively related to the abundance and richness of arthropods. We found that arthropod abundance and richness were positively associated with the percent of vegetation cover and negatively associated with substrate temperature. Neither arthropod abundance nor richness was influenced by the relative moisture of substrate. We also found that arthropod abundance and richness varied by green roof setups (treatments) and by seasonality. Arthropod abundance on green roofs was the highest in treatments with annuals only, while species richness was slightly similar between treatments containing annuals but varied between sampling periods. This study suggests that adding annuals to traditional Sedum roofs has positive effects on arthropods. This finding can support the development of biodiverse cities because most extensive green roofs are inaccessible to the public and can provide undisturbed habitat for several plant and arthropod species.


2014 ◽  
Vol 67 ◽  
pp. 326-326
Author(s):  
C.A. Rowe ◽  
M.G. Hill ◽  
D.P. Logan

Nysius huttoni is a native species of wheat bug which is an occasional quarantine pest on export kiwifruit Wheat bug has a wide range of host plants including wheat and brassica crops as well as many weed species The kiwifruit harvest of 2013 had a high incidence of wheat bug finds on fruit in packhouses In response an orchard survey was undertaken to identify orchard habitats used by wheat bug Twentyfive orchards where wheat bug was found during packing in 2013 were surveyed from the Te Puke area from February to March At each orchard four habitats were searched (1) ground vegetation under the kiwifruit canopy (2) the loadout zone (3) edge of the loadout zone and (4) grassland surrounding the was found in and around the loadout zone associated with weed species notably Polygonum aviculare the dominant weed species in loadout zones No wheat bug was found under the kiwifruit canopy and the remaining 4 were found in grassland This preliminary survey suggests that the risk of wheat bug infestation can be reduced considerably by keeping loadout zones free of weeds during spring and summer


<em>Abstract</em>.—The identification, protection, and restoration of spawning habitat for Muskellunge <em>Esox masquinongy </em>in Green Bay, Lake Michigan are vital steps for re-establishing a self-sustaining population. This study was designed to locate spawning areas, document and model spawning habitat preferences, assess natural recruitment, and determine if suitable habitat was found throughout Green Bay (Fox River, lower Green Bay, Menominee River, and Little Sturgeon Bay). Radio transmitters were inserted into the oviduct of mature female Muskellunge prior to spawning and expelled transmitters were later located using radio telemetry to identify spawning locations. Between 2009 and 2010, 26 of 37 (70%) implanted transmitters were located as deposited at spawning locations. Using identified spawning locations, habitat selection was estimated for key environmental variables, and MaxEnt (maximum entropy) was utilized to model Muskellunge spawning habitat in the Menominee River, as it was the only study area where natural reproduction was documented. Menominee River Muskellunge showed significant preferences for spawning in areas with shallow bottom slopes (5%), with medium-to-high submerged aquatic vegetation coverage (>33%), where coarse woody debris was present, and where dominant substrates were sand or cobble. MaxEnt modeling predicted a ~2.5 magnitude greater likelihood of spawning at an average spawning location compared to an average background location. Comparisons of available habitat among study areas showed the Menominee River contained more spawning habitat with preferred characteristics. Results from this study are important steps in identifying spawning habitat as a potential limiting factor to successful Muskellunge reintroduction and models could be used to locate suitable areas to stock and guide delineation of critical spawning habitat to designate for protection.


2020 ◽  
Author(s):  
Sarara Azumi ◽  
Yuya Watari ◽  
Nariko Oka ◽  
Tadashi Miyashita

Abstract Understanding how invasive predators impact native species is essential for the development of effective control strategies, especially in insular environments where alternative non-native prey species exist. We examined seasonal and spatial shifts in diet of feral cat Felis silvestris catus focusing on the predation on native streaked shearwaters, Calonectris leucomelas, and introduced rats, Rattus rattus and R. norvegicus, which are alternative prey to shearwaters, on Mikura Island, Japan. Streaked shearwaters breed at low elevations on the island from spring to autumn, whereas rats inhabit the island throughout the year, which makes them an alternative prey when native shearwaters are absent. Fecal analysis revealed that feral cats dramatically shifted their diets from introduced rats in winter to streaked shearwaters in seabird-season in low elevation areas of the island, while cats preyed on rats throughout the year at high altitudes on the island. This finding suggests that feral cats selectively prey on shearwaters. This is probably because of their large body size and less cautious behavior, and because introduced rats sustain the cat population when shearwaters are absent. The number of streaked shearwaters killed was estimated to be 313 individuals per cat per year, which represents an indication of top-down effects of feral cats on streaked shearwaters. Further studies on the demographic parameters and interspecific interactions of the three species are required to enable effective cat management for the conservation of streaked shearwaters on this island.


1995 ◽  
Vol 2 (3) ◽  
pp. 299 ◽  
Author(s):  
E. M. Date ◽  
H. F. Recher ◽  
H. A. Ford ◽  
D. A. Stewart

A survey of conservation reserves, rainforest remnants and agricultural districts in northeastern New South Wales was conducted to determine the abundance, movements and habitat requirements of rainforest pigeons, to evaluate the extent and use of suitable habitat in conservation reserves, and to provide guidelines for the conservation and management of rainforest pigeons. Eight species of rainforest pigeon occur in northeastern New South Wales. Commencing with the clearing of rainforest in the 1860s for agriculture, rainforest pigeons declined in abundance throughout New South Wales and by the 1970s five species were thought to be threatened in the state. Since then, rainforest pigeons have apparently increased in abundance and distribution, but the Wompoo, Rose-crowned and Superb Pigeons continue to be listed by the New South Wales National Parks and Wildlife Service as vulnerable and rare. However, populations of all species of rainforest pigeons in New South Wales are relatively small and vulnerable to further loss of habitat. Most rainforest pigeons show a preference for subtropical rainforest habitat, but moist eucalypt forests, gardens and weedy exotic vegetation along roads and on abandoned farmland are also frequented to varying degrees by different species. To investigate recent trends in pigeon abundance we used data collected for up to 12 years from eight sites and during 1988, 1989 and 1990 from 17 rainforest remnants in northeastern New South Wales. The data suggest that rainforest pigeons now occur more frequently in lowland agricultural areas than in the recent past and tend to confirm an increase in abundance since the 1970s. Nesting and foraging habitats for rainforest pigeons are extensive in the conservation reserve system of northeastern New South Wales, but these habitats, which are largely at high elevations, lack winter food resources. Instead, pigeons congregate in remnant rainforest and exotic berry-bearing trees and shrubs in agricultural areas at lower elevations and near the coast. They rely on these habitats for food during winter and it is the restricted extent of this habitat that probably limits their abundance, not the area or quality of habitat at higher elevations. The conservation and management of rainforest pigeons requires the protection of low elevation and coastal rainforest remnants. As development of northeastern New South Wales proceeds, to avoid a decline in the abundances of rainforest pigeons it will be necessary to protect sclerophyll forest with native or exotic fruit bearing trees and shrubs and to extend the area of suitable habitat by the regeneration of rainforest and by the planting of native species used by pigeons as a food source. This will become increasingly important as the control and removal of exotic plants, such as Lantana Lantana camara and Camphor Laurel Cinnamonum camphora, on which some pigeons depend as a winter food source, becomes more successful.


2020 ◽  
Vol 47 (2) ◽  
pp. 186
Author(s):  
Yuqing Chen ◽  
Bruce Doran ◽  
Sharyn Sinclair-Hannocks ◽  
John Mangos ◽  
Philip Gibbons

Abstract ContextThe common brushtail possum (Trichosurus vulpecula) is a protected native species in Australia that can access buildings in urban areas and cause considerable damage or disruption to building occupants. Although several strategies to discourage this species from entering buildings have been recommended, few have been evaluated empirically. AimsOur study aims to analyse how landscaping and building construction influence occupancy of buildings by the common brushtail possum. MethodsWe collated reports of possums occupying 134 buildings over 12 years on the campus of The Australian National University (ANU), in the Australian Capital Territory (ACT). We used generalised linear modelling (GLM) to identify associations between the total number of reported possum-related incidents for buildings and a range of landscape and building characteristics. Key resultsControlling for the effect of building size, we found that the number of reported possum-related incidents in buildings was positively associated with the percentage of tree and shrub canopy cover within the calculated home-range buffer distance of 49m from buildings, length of canopy overhanging roofs and building age, and negatively associated with tree species richness and number of trees with natural hollows and nest boxes within 49m of buildings. There were likely to be more possum-related reports from buildings in areas where the dominant tree genus was native, buildings with parapets (walls extending above the roof), buildings with structures penetrating from the roof, buildings with tile roofs and gable roofs. ConclusionsA combination of suitable habitat surrounding buildings, suitable access to the roofs of buildings and weak points in building roofs (e.g. parapets, roof penetrations), makes them more vulnerable to occupancy by the common brushtail possum. Implications Our results provided clues for managing existing buildings, or designing new buildings, in a way that may reduce the likelihood of occupancy by the common brushtail possum. Our study also demonstrated how building-maintenance records can be used to address human–wildlife conflict over time.


2020 ◽  
Vol 57 (6) ◽  
pp. 1700-1711
Author(s):  
X Acosta ◽  
A X González-Reyes ◽  
N D Centeno ◽  
J A Corronca

Abstract This study determined the spatial and temporal dynamics of two native neotropical species flies of forensic interest, belonging to the Lucilia (Robineau-Desvoidy) genus. The study focused on their abundance and reproductive behaviors associated with different habitats and phenological parameters. In the Province of Salta, Argentina, monthly samplings were performed over 1 yr in urban, rural, and native habitats, at morning, mid-day, and afternoon periods, controlling the oviposition of captured specimens. Environmental variables were also assessed: cloudiness, precipitation, relative humidity, temperature, and tree cover. Lucilia purpurascens (Walker) appeared to be associated with native habitats, whereas Lucilia ochricornis (Wiedemann) was mainly associated with rural habitats, exhibiting distinct habitat preferences. Two ecotones were also identified: rural–urban and rural–native, suggesting rural habitats promoted habitable conditions at its margins. Both species were recorded at the end of winter to the middle of autumn, with an initial peak in early spring, and a second peak at late summer. These peaks were associated with the highest numbers of laid eggs. Lucilia purpurascens preferred high tree coverings, whereas L. ochricornis resisted areas with intermediate sun, suggesting limited sun exposure was important. The latter was also associated with daily flight activities; during the warm season, the densest catches occurred at morning and afternoon periods, whereas during the cold season, they occurred at mid-day. Climatic variables explained 77% of variability in terms of abundance and oviposition. Synergistic effects were observed between these variables, suggesting that these variables conditioned insect distribution and reproduction, and not just temperature per se.


2000 ◽  
Vol 27 (4) ◽  
pp. 421 ◽  
Author(s):  
J. C. Z. Woinarski

The rodent fauna of the monsoonal tropics of the Northern Territory comprises 23 native species and two introduced species. Three species (Zyzomys maini, Z. palatalis and Pseudomys calabyi) are endemic to the area, and four species (Pseudomys hermannsburgensis, P. desertor, P. johnsoni and Notomys alexis) enter the area only on its southern (arid) fringe. The rodent fauna is closely related to that of the Kimberley, Western Australia. Distribution maps for all species are given. One species (Z. palatalis) has an extremely restricted range and is regarded as critically endangered. The lack of information on the distribution and abundance of rodents in general in this area is evident in the national classification of five of its species (Xeromys myoides, Mesembriomys macrurus, Notomys aquilo, Pseudomys desertor and Pseudomys johnsoni) as Insufficiently Known. The two introduced rodents (Mus domesticus and Rattus rattus) are virtually restricted to urban and highly modified areas, although R. rattus also occurs on one uninhabited island. In contrast to that of much of the rest of Australia, this rodent fauna has apparently retained its full complement of species since European colonisation. This enduring legacy is attributable largely to the relatively limited modification of its environments. However, three species (Mesembriomys macrurus, Rattus tunneyi and Conilurus penicillatus) appear to be declining. The pattern of decline in these species, and in the mammal fauna generally, is obscured by the very limited historical data. However, declines appear most pronounced in the cattle country of the Victoria River District and Gulf regions. Priorities for the management of this rodent fauna include survey of poorly known areas, survey for poorly known species, monitoring of rodent communities, and landscape-wide management of the three pervasive processes with probably greatest impacts – fire, grazing and feral predators.


2014 ◽  
Vol 369 (1643) ◽  
pp. 20130192 ◽  
Author(s):  
John Clark ◽  
Yeqiao Wang ◽  
Peter V. August

The invasion of ecosystems by non-native species is a major driver of biodiversity loss worldwide. A critical component of effective land management to control invasion is the identification and active protection of areas at high risk of future invasion. The Appalachian Trail Decision Support System (A.T.-DSS) was developed to inform regional natural resource management by integrating remote sensing data, ground-based measurements and predictive modelling products. By incorporating NASA's remote sensing data and modelling capacities from the Terrestrial Observation and Prediction System (TOPS), this study examined the current habitat suitability and projected suitable habitat for the invasive species tree-of-heaven ( Ailanthus altissima ) as a prototype application of the A.T.-DSS. Species observations from forest surveys, geospatial data, climatic projections and maximum entropy modelling were used to identify regions potentially susceptible to tree-of-heaven invasion. The modelling result predicted a 48% increase in suitable area over the study area, with significant expansion along the northern extremes of the Appalachian Trail.


Sign in / Sign up

Export Citation Format

Share Document