scholarly journals Anatomical Variants of the Circle of Willis and Brain Lesions in Migraineurs

Author(s):  
C. Cavestro ◽  
L. Richetta ◽  
M. R. L'Episcopo ◽  
E. Pedemonte ◽  
S. Duca ◽  
...  

Background:Some reports demonstrated vascular alterations in brain magnetic resonance imaging (MRI) in migraineurs and a relationship between circle of Willis (Circle) variants and lacunar brain infarcts. We examined anomalies of the whole circle of Willis and their relationship with vascular brain lesions in migraineurs, to identify any possible vascular mechanism in migraine.Methods:We studied, with a cohort controlled study, the circle of Willis in migraineurs seen consecutively in our Headache Center, and in non-headache controls, using angio-MRI of the brain. Statistical analysis used ANOVA, Scheffè's criterion, t-student test.Results:We recruited 270 migraineurs (204 without aura (MWOA), 66 with aura (MWA) and 159 controls. Migraineurs presented an anatomical variant in 108 (40%) cases with 34 controls (21.4%) presenting a variant. We found a significant association between MWOA and variants (OR=2.4 CI95% [1.5 to 3.9]) and between MWA and variants (OR=3.2 CI95% [1.6 to 4.1]). Unilateral posterior variants with basilar hypoplasia are statistically associated only with MWA compared to controls (OR=9.2, CI95% [2.3 to 37.2]). Thirty-three percent of MWOA and 24% of MWA sufferers present some kind of brain lesion, included 2% of infra-tentorial lesions. We did not find any statistical association between the presence of Circle variants and ischemic lesions on MRI (OR=1.5 CI95% [0.68; 1.94]), or with infratentorial lacunar lesions (OR=1.58 CI95% [0.48 to 5.24]).Conclusions:Anatomical variants of the Circle of Willis are significantly more frequent in migraineurs; posterior anomalies are more frequent in MWA, suggesting a vascular mechanism provoking changes in cerebral blood flow, thereby stimulating cortical spreading depression.

2021 ◽  
Vol 2 (2) ◽  
pp. 94-99
Author(s):  
Anatoly V. Anikin ◽  
Milana A. Basargina ◽  
Eugeniya V. Uvakina

The periventricular and deep white matter of the immature brain of premature infants has an increased vulnerability to various, primarily ischemic injuries. The leading mechanism of selective vulnerability of the white matter of the large hemispheres in children with a low gestation period is the lack of formation of adjacent blood circulation zones between the main arteries of the developing brain. Magnetic resonance imaging has a high sensitivity to detect damage to the brain substance, both in the acute period and in the period of long-term outcomes. Periventricular leukomalacia (PVL) is one of the variants of brain damage in premature infants and the most common term in the conclusions of diagnostic doctors (ultrasound, CT, MRI). Considering the pathomorphological criteria, not always detected changes in the white matter of the large hemispheres are PVL. Diffuse (telencephalic) gliosis and diffuse leukomalacia are ordinary and typical variants of damage to the white matter of the large hemispheres in extremely premature infants, with a gestation period of up to 30-32 weeks. In the first variant, atrophic changes predominate with a pronounced decrease in the volume of white matter and a secondary expansion of the lateral ventricles. Diffuse leukomalacia is most often mistaken for PVL, but the localization of the white matter lesion of the large hemispheres is extensive and extends beyond the peri- and paraventricular region. Clinical examples show various variants of primary non-hemorrhagic brain lesions in prematurely born children in the long-term period. The analysis of the revealed changes is carried out, taking into account current data on developing the brain and pathomorphological criteria.


Author(s):  
Sreelakshmi S. ◽  
Anoop V. S.

Neurological disorders are diseases of the central and peripheral nervous system and most commonly affect middle- or old-age people. Accurate classification and early-stage prediction of such disorders are very crucial for prompt diagnosis and treatment. This chapter discusses a new framework that uses image processing techniques for detecting neurological disorders so that clinicians prevent irreversible changes that may occur in the brain. The newly proposed framework ensures reliable and accurate machine learning techniques using visual saliency algorithms to process brain magnetic resonance imaging (MRI). The authors also provide ample hints and dimensions for the researchers interested in using visual saliency features for disease prediction and detection.


2018 ◽  
Vol 25 (4) ◽  
pp. 585-590 ◽  
Author(s):  
Jae-Won Hyun ◽  
So-Young Huh ◽  
Hyun-June Shin ◽  
Mark Woodhall ◽  
Su-Hyun Kim ◽  
...  

Objectives: We aimed to evaluate the utility of the recently described brain lesion distribution criteria to differentiate multiple sclerosis (MS) from aquaporin-4 immunoglobulin G-positive neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein immunoglobulin G-associated encephalomyelitis (MOG-EM) at disease onset in an Asian cohort. Methods: A total of 214 patients who fulfilled the published criteria for MS, NMOSD, or MOG-EM and underwent brain magnetic resonance imaging (MRI) within 3 months of disease onset were enrolled. The brain lesion distribution criteria were defined as the presence of a lesion adjacent to the body of the lateral ventricle and in the inferior temporal lobe, or an S-shaped U-fiber lesion, or a Dawson’s finger-type lesion. Results: Brain lesions were identified in the initial MRI scans of 166/214 patients. The distribution criteria were applied to these scans (MS ( n = 94), NMOSD ( n = 64), and MOG-EM ( n = 8)). The sensitivity, specificity, and positive and negative predictive values of the criteria for MS versus NMOSD were 79.8%, 87.5%, 90.4%, and 74.7%, and for MS versus MOG-EM these were 79.8%, 100%, 100%, and 29.6%, respectively. Conclusion: These findings suggest that the brain lesion distribution criteria are helpful in distinguishing MS from NMOSD and MOG-EM in an Asian population, even at disease onset.


2017 ◽  
Vol 16 (04) ◽  
pp. 239-242
Author(s):  
Gunnar Buyse ◽  
Lieven Lagae ◽  
Philippe Demaerel ◽  
Frank Kesteloot ◽  
Ingele Casteels ◽  
...  

AbstractWyburn–Mason syndrome is a rare condition that is characterized by ipsilateral arteriovenous malformations affecting the eye, brain, and facial skin. A conjunctival vascular dilation can be a rare ocular presenting sign. We report a 6-year-old boy who attended the hospital because of the sudden appearance of a conjunctival vascular lesion in his right eye. Inspection of his facial skin showed a subtle discoloration along the right trigeminal nerve and a vascular structure of the conjunctiva. Fundoscopy showed dilated and tortuous retinal vessels. Brain magnetic resonance imaging (MRI) revealed a large arteriovenous malformation involving the thalamus and perimesencephalic area. Ophthalmologic and neuroradiologic findings were consistent with the diagnosis of Wyburn–Mason syndrome. The sudden emergence of a vascular malformation in the conjunctiva should alert the clinician to perform an ophthalmoscopy, and in our patient, this finding was the clue to diagnosis of Wyburn–Mason syndrome. Because of the association between retinal and intracranial arteriovenous malformations, an MRI of the brain is strongly recommended in all patients with ocular arteriovenous malformations.


2013 ◽  
Vol 20 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Antonio Giorgio ◽  
Maria Laura Stromillo ◽  
Maria Letizia Bartolozzi ◽  
Francesca Rossi ◽  
Marco Battaglini ◽  
...  

Background: The accrual of brain focal pathology is considered a good substrate of disability in relapsing–remitting multiple sclerosis (RRMS). However, knowledge on long-term lesion evolution and its relationship with disability progression is poor. Objective: The objective of this paper is to evaluate in RRMS the long-term clinical relevance of brain lesion evolution. Methods: In 58 RRMS patients we acquired, using the same scanner and protocol, brain magnetic resonance imaging (MRI) at baseline and 10±0.5 years later. MRI data were correlated with disability changes as measured by the Expanded Disability Status Scale (EDSS). Results: The annualized 10-year lesion volume (LV) growth was +0.25±0.5 cm3 (+6.7±8.7%) for T2-weighted (T2-W) lesions and +0.20±0.31 cm3 (+11.5±12.3%) for T1-weighted (T1-W) lesions. The univariate analysis showed moderate correlations between baseline MRI measures and EDSS at 10 years ( p < 0.001). Also, 10-year EDSS worsening correlated with LV growth and the number of new/enlarging lesions measured over the same period ( p < 0.005). In the stepwise multiple regression analysis, EDSS worsening over 10 years was best correlated with the combination of baseline T1-W lesion count and increasing T1-W LV ( R = 0.61, p < 0.001). Conclusion: In RRMS patients, long-term brain lesion accrual is associated with worsening in clinical disability. This is particularly true for hypointense, destructive lesions.


1998 ◽  
Vol 35 (5) ◽  
pp. 409-411 ◽  
Author(s):  
Y. Noda ◽  
Y. Uchinuno ◽  
H. Shirakawa ◽  
S. Nagasue ◽  
N. Nagano ◽  
...  

A bovine fetus aborted at 187 days of gestation was serologically and immunohistopathologically examined. Serum and cerebrospinal fluid samples had high titers of virus-neutralizing antibody for Aino virus. A severe necrotizing encephalopathy was noted. Aino virus antigen was demonstrated in neuroglial cells within the brain lesion. The destruction of developing neuronal cells appeared to be a significant feature of the pathogenesis of lesions due to Aino virus infection in the central nervous system.


Author(s):  
Ghazaleh Jamalipour Soufi ◽  
Siavash Iravan

Pelizaeus-Merzbacher Disease (PMD), as a rare genetically x-linked leukodystrophy, is a disorder of proteolipid protein expression in myelin formation. This disorder is clinically presented by neurodevelopmental delay and abnormal pendular eye movements. The responsible gene for this disorder is the proteolipid protein gene (PLP1). Our case was a oneyear-old boy referred to the radiology department for evaluating the Central Nervous System (CNS) development by brain Magnetic Resonance Imaging (MRI). Clinically, he demonstrated neuro-developmental delay symptoms. The brain MRI results indicated a diffuse lack of normal white matter myelination. This case report should be considered about the possibilityof PMD in the brain MRI of patients who present a diffuse arrest of normal white matter myelination.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Batil Alonazi ◽  
Ahmed M. Farghaly ◽  
Mohamed A. Mostafa ◽  
Jehad A. Al-Watban ◽  
Salah A. Zindani ◽  
...  

AbstractThe increased frequency of neurological manifestations, including central nervous system (CNS) manifestations, in patients with coronavirus disease 2019 (COVID-19) pandemic is consistent with the virus's neurotropic nature. In most patients, brain magnetic resonance imaging (MRI) is a sensitive imaging modality in the diagnosis of viral encephalitides in the brain. The purpose of this study was to determine the frequency of brain lesion patterns on brain MRI in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia patients who developed focal and non-focal neurological manifestations. In addition, it will compare the impact of the Glasgow Coma Scale (GCS) as an index of deteriorating cerebral function on positive brain MRIs in both neurological manifestations. This retrospective study included an examination of SARS-CoV-2 pneumonia patients with real-time reverse transcription polymerase chain reaction (RT-PCR) confirmation, admitted with clinicoradiologic evidence of COVID-19 pneumonia, and who were candidates for brain MRI due to neurological manifestations suggesting brain involvement. Brain imaging acquired on a 3.0 T MRI system (Skyra; Siemens, Erlangen, Germany) with a 20-channel receive head coil. Brain MRI revealed lesions in 38 (82.6%) of the total 46 patients for analysis and was negative in the remaining eight (17.4%) of all finally enclosed patients with RT-PCR confirmed SARS-CoV-2 pneumonia. Twenty-nine (63%) patients had focal neurological manifestations, while the remaining 17 (37%) patients had non-focal neurological manifestations. The patients had a highly significant difference (p = 0.0006) in GCS, but no significant difference (p = 0.4) in the number of comorbidities they had. Brain MRI is a feasible and important imaging modality in patients with SARS-CoV-2 pneumonia who develop neurological manifestations suggestive of brain involvement, particularly in patients with non-focal manifestations and a decline in GCS.


2019 ◽  
Vol 9 (3) ◽  
pp. 569 ◽  
Author(s):  
Hyunho Hwang ◽  
Hafiz Zia Ur Rehman ◽  
Sungon Lee

Skull stripping in brain magnetic resonance imaging (MRI) is an essential step to analyze images of the brain. Although manual segmentation has the highest accuracy, it is a time-consuming task. Therefore, various automatic segmentation algorithms of the brain in MRI have been devised and proposed previously. However, there is still no method that solves the entire brain extraction problem satisfactorily for diverse datasets in a generic and robust way. To address these shortcomings of existing methods, we propose the use of a 3D-UNet for skull stripping in brain MRI. The 3D-UNet was recently proposed and has been widely used for volumetric segmentation in medical images due to its outstanding performance. It is an extended version of the previously proposed 2D-UNet, which is based on a deep learning network, specifically, the convolutional neural network. We evaluated 3D-UNet skull-stripping using a publicly available brain MRI dataset and compared the results with three existing methods (BSE, ROBEX, and Kleesiek’s method; BSE and ROBEX are two conventional methods, and Kleesiek’s method is based on deep learning). The 3D-UNet outperforms two typical methods and shows comparable results with the specific deep learning-based algorithm, exhibiting a mean Dice coefficient of 0.9903, a sensitivity of 0.9853, and a specificity of 0.9953.


BMC Neurology ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Andy Jin ◽  
Jean Mamelona ◽  
Byrne Harper ◽  
Alier Marrero

Abstract Background Rhombencephalitis (RE) is a serious condition of the brain with multiple etiologies. We report a unique case of recurrent, postpartum RE that is associated with positive anti-centromere antibody (ACA). A discussion of the case, current literature on autoimmune RE and related autoantibodies are reviewed. Case presentation A healthy 33-year-old Caucasian patient (gravida 2, para 2) had two episodes of progressive focal neurological deficits during postpartum periods. Signs and symptoms included right-sided dysmetria, adiadochokinesia, weakness, ataxia, and photophobia. MRI revealed rhombencephalitis involving the mesencephalon of the brainstem. Extensive and comprehensive investigations using blood and cerebrospinal fluid (CSF) were consistently positive only for ACA. The first episode was successfully treated with empiric antimicrobial agents and steroid. Given the negative infectious work up with the prior episode and the nearly identical clinical presentations, the second episode was treated with corticosteroid only. This led to complete resolution of her symptoms and reversal of the brain magnetic resonance imaging (MRI) lesions. Conclusion To the author's knowledge, this is the first report of a primary autoimmune RE during postpartum period that is associated with ACA. Immunologic causes should be considered early with any encephalitis. Given the risk of recurrence, relapse, and neurologic deterioration, regular monitoring is recommended, especially for female patients of child-bearing age. Consistent with the current literature on autoimmune RE, steroid seems to be an effective treatment for ACA-associated RE.


Sign in / Sign up

Export Citation Format

Share Document