Microstructure of dense MgO penetrated by a silicate liquid

Author(s):  
Sundar Ramamurthy ◽  
Michael P. Mallamaci ◽  
C. Barry Carter ◽  
Peler R. Duncombe ◽  
Thomas M. Shaw

Grain boundaries control most of the critical properties of ceramic materials and devices. The presence of an intergranular amorphous phase in many polycrystalline ceramic compacts has been reported. Grain boundaries may also involve regions of ordered structure and amorphous (glassy) phase. Dense polycrystalline compacts are processed by liquid-phase sintering routes. The addition of sintering aids such as CaO, MgO and SiO2 influence the densification process substantially. During sintering the grain boundaries are wet by liquid phases, and amorphous films are often found at the grain boundaries and triple junctions in the sintered product. The presence of such films not only influences the sintering behavior but it also affects the final properties in the sintered product. These films have therefore been the subject of intense investigation. Silicate-based compositions are the typical glass phases observed in these materials.In the present study, polycrystalline, dense MgO cubes have been penetrated by liquid monlicellite (CaMgSiO4) at 1700°C.

2007 ◽  
Vol 336-338 ◽  
pp. 1062-1064 ◽  
Author(s):  
Fa Qiang Yan ◽  
Fei Chen ◽  
Qiang Shen ◽  
Lian Meng Zhang

In this study, spark plasma sintering (SPS) was applied to prepare α-Si3N4 ceramics of different densities with magnesia, silicon dioxide, alumina as the sintering aids. The sintering behavior and liquid phase sintering (LPS) mechanism were discussed and the factors influencing the density of the prepared samples were analyzed. Microstructures of sintered samples were observed and the phase compositions were analyzed. The results showed that α-Si3N4 ceramics can be sintered by SPS based on the reaction among α-Si3N4 and sintering additives which lead to the liquid phase and the density can be well controlled from 2.48 to 3.09 g/cm3 while the content of the sintering aids changes from 10% to 28.5% and sintering temperature from 1400°C to 1500°C.


2005 ◽  
Vol 290 ◽  
pp. 272-275
Author(s):  
Miroslav Balog ◽  
Pavol Šajgalík ◽  
Zoltán Lenčéš ◽  
Miroslav Hnatko ◽  
Jozef Kečkéš ◽  
...  

The present paper deals with the nano-indentation of SiC-micro and Si3N4/SiCmicro/ nano ceramic materials. The investigated SiC-micro and Si3N4/SiC-micro/nano ceramics were prepared by liquid phase sintering. Liquid phase was formed from different sintering additives (Y2O3, Yb2O3, Sm2O3). In the case of Si3N4/SiC-micro/nano ceramics the SiC nano-grains were created from SiNC amorphous powder. SiNC precursor decomposed to SiC and Si3N4 particles during sintering. The comparison of nano- and macro-hardness of investigated ceramic materials showed that nano-hardness is significantly higher. The indentation modulus correlated with the measured nano-hardness. Remarkable influence of grain boundaries and SiC nano-inclusions on hardness was observed.


2007 ◽  
Vol 554 ◽  
pp. 181-188 ◽  
Author(s):  
Katsutoshi Komeya ◽  
Junichi Tatami

Liquid-phase sintering of aluminum nitride (AlN) with additives was reviewed. The most important innovation was the discovery of critical sintering aids for AlN densification, specifically rare-earth compounds and alkali-earth compounds. These additives are extremely valuable for increasing thermal conductivity by trapping and removing oxygen in the AlN lattice during firing. Consequently, thermal conductivities in AlN ceramics of 100 to 260W/mK were developed. We also studied the effects of parameters such as raw powder, additives, composition, and firing condition in liquid-phase sintering with AlN-sintering aids, focusing on oxygen impurities in the system. The sintering behavior of powder compacts was investigated by evaluating the densification, the lattice constant c for AlN, and the dihedral angle of the interface between the AlN grains and the grain boundary liquid-phase. In our results, the change in densification was closely related to changes in the lattice constant c and the dihedral angle. That is, the sintered density increased with an increase in the oxygen dissolved in the AlN grains and with the improvement in wettability between the solid and liquid phase.


Author(s):  
N. Merk ◽  
A. P. Tomsia ◽  
G. Thomas

A recent development of new ceramic materials for structural applications involves the joining of ceramic compounds to metals. Due to the wetting problem, an interlayer material (brazing alloy) is generally used to achieve the bonding. The nature of the interfaces between such dissimilar materials is the subject of intensive studies and is of utmost importance to obtain a controlled microstructure at the discontinuities to satisfy the demanding properties for engineering applications . The brazing alloy is generally ductile and hence, does not readily fracture. It must also wett the ceramic with similar thermal expansion coefficient to avoid large stresses at joints. In the present work we study mullite-molybdenum composites using a brazing alloy for the weldment.A scanning electron micrograph from the cross section of the joining sequence studied here is presented in Fig. 1.


Author(s):  
T. A. Epicier ◽  
G. Thomas

Mullite is an aluminium-silicate mineral of current interest since it is a potential candidate for high temperature applications in the ceramic materials field.In the present work, conditions under which the structure of mullite can be optimally imaged by means of High Resolution Electron Microscopy (HREM) have been investigated. Special reference is made to the Atomic Resolution Microscope at Berkeley which allows real space information up to ≈ 0.17 nm to be directly transferred; numerous multislice calculations (conducted with the CEMPAS programs) as well as extensive experimental through-focus series taken from a commercial “3:2” mullite at 800 kV clearly show that a resolution of at least 0.19 nm is required if one wants to get a straightforward confirmation of atomic models of mullite, which is known to undergo non-stoichiometry associated with the presence of oxygen vacancies.Indeed the composition of mullite ranges from approximatively 3Al2O3-2SiO2 (referred here as 3:2-mullite) to 2Al2O3-1SiO2, and its structure is still the subject of refinements (see, for example, refs. 4, 5, 6).


Author(s):  
Michael P. Mallamaci ◽  
James Bentley ◽  
C. Barry Carter

Glass-oxide interfaces play important roles in developing the properties of liquid-phase sintered ceramics and glass-ceramic materials. Deposition of glasses in thin-film form on oxide substrates is a potential way to determine the properties of such interfaces directly. Pulsed-laser deposition (PLD) has been successful in growing stoichiometric thin films of multicomponent oxides. Since traditional glasses are multicomponent oxides, there is the potential for PLD to provide a unique method for growing amorphous coatings on ceramics with precise control of the glass composition. Deposition of an anorthite-based (CaAl2Si2O8) glass on single-crystal α-Al2O3 was chosen as a model system to explore the feasibility of PLD for growing glass layers, since anorthite-based glass films are commonly found in the grain boundaries and triple junctions of liquid-phase sintered α-Al2O3 ceramics.Single-crystal (0001) α-Al2O3 substrates in pre-thinned form were used for film depositions. Prethinned substrates were prepared by polishing the side intended for deposition, then dimpling and polishing the opposite side, and finally ion-milling to perforation.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4017
Author(s):  
Dorota Szwagierczak ◽  
Beata Synkiewicz-Musialska ◽  
Jan Kulawik ◽  
Norbert Pałka

New ceramic materials based on two copper borates, CuB2O4 and Cu3B2O6, were prepared via solid state synthesis and sintering, and characterized as promising candidates for low dielectric permittivity substrates for very high frequency circuits. The sintering behavior, composition, microstructure, and dielectric properties of the ceramics were investigated using a heating microscope, X-ray diffractometry, scanning electron microscopy, energy dispersive spectroscopy, and terahertz time domain spectroscopy. The studies revealed a low dielectric permittivity of 5.1–6.7 and low dielectric loss in the frequency range 0.14–0.7 THz. The copper borate-based materials, owing to a low sintering temperature of 900–960 °C, are suitable for LTCC (low temperature cofired ceramics) applications.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3365
Author(s):  
Justyna Zygmuntowicz ◽  
Magdalena Gizowska ◽  
Justyna Tomaszewska ◽  
Paulina Piotrkiewicz ◽  
Radosław Żurowski ◽  
...  

This work focuses on research on obtaining and characterizing Al2O3/ZrO2 materials formed via slip casting method. The main emphasis in the research was placed on environmental aspects and those related to the practical use of ceramic materials. The goal was to analyze the environmental loads associated with the manufacturing of Al2O3/ZrO2 composites, as well as to determine the coefficient of thermal expansion of the obtained materials, classified as technical ceramics. This parameter is crucial in terms of their practical applications in high-temperature working conditions, e.g., as parts of industrial machines. The study reports on the four series of Al2O3/ZrO2 materials differing in the volume content of ZrO2. The sintering process was preceded by thermogravimetric measurements. The fabricated and sintered materials were characterized by dilatometric study, scanning electron microscopy, X-ray diffraction, and stereological analysis. Further, life cycle assessment was supplied. Based on dilatometric tests, it was observed that Al2O3/ZrO2 composites show a higher coefficient of thermal expansion than that resulting from the content of individual phases. The results of the life cycle analysis showed that the environmental loads (carbon footprint) resulting from the acquisition and processing of raw materials necessary for the production of sinters from Al2O3 and ZrO2 are comparable to those associated with the production of plastic products such as polypropylene or polyvinyl chloride.


2012 ◽  
Vol 18 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Biljana Angjusheva ◽  
Emilija Fidancevska ◽  
Vojo Jovanov

Dense ceramics are produced from fly ash from REK Bitola, Republic of Macedonia. Four types of fly ash from electro filters and one from the collected zone with particles < 0.063 mm were the subject of this research. Consolidation was achieved by pressing (P= 133 MPa) and sintering (950, 1000, 1050 and 11000C and heating rates of 3 and 100/min). Densification was realized by liquid phase sintering and solid state reaction where diopside [Ca(Mg,Al)(Si,Al)2O6] was formed. Ceramics with optimal properties (porosity 2.96?0.5%, bending strength - 47.01?2 MPa, compressive strength - 170 ?5 MPa) was produced at 1100?C using the heating rate of 10?C/min.


Sign in / Sign up

Export Citation Format

Share Document