Fate of genetically marked mitochondrial DNA from spermatocytes microinjected into mouse zygotes

Zygote ◽  
1999 ◽  
Vol 7 (2) ◽  
pp. 151-156 ◽  
Author(s):  
James M. Cummins ◽  
Hidefumi Kishikawa ◽  
Denise Mehmet ◽  
Ryuzo Yanagimachi

Cytoplasts from single spermatocytes of NZB/BinJ mice were separated from the nuclei and individually microinjected into B6D2F1 (C57BL/6 × DNBA/2J) hybrid embryos at the pronuclear stage (20 h after hCG injection). Of 363 zygotes injected, 311 (86%) survived and developed. From these experiments, we transferred 222 embryos into 20 pseudopregnant recipients. Eighteen (90%) became pregnant and 82 pups were born (37% of transfers). Mitochondrial DNA (mt DNA) from the NZB/BinJ strain lacks a RsaI restriction site and can thus be distinguished from the host embryo following PCR amplification. We were unable to detect the transferred mtDNA in blastocysts on day 4–5 after injection. Nor could we detect NZB/BinJ mtDNA in placentae, nor in tissues from mice born to host mothers following the transfer of blastocysts that developed from injected zygotes. Rejection of paternal mitochondria by the embryo normally occurs at the 4- to 8-cell stage in mice and is apparently dependent on mutual recognition between the mitochondria and the nuclear genome. We conclude that this mechanism has probably already developed by the time the germ cells have become committed to meiosis.

1997 ◽  
Vol 54 (7) ◽  
pp. 1548-1556 ◽  
Author(s):  
J C Patton ◽  
B J Gallaway ◽  
R G Fechhelm ◽  
M A Cronin

There has been concern that a causeway leading to oil production facilities in the Alaskan Beaufort Sea could affect the extent of emigration from, and immigration into, a population of broad whitefish (Coregonus nasus) in the Sagavanirktok River. To assess this, we analyzed the genetic relationships of the broad whitefish populations in the Sagavanirktok River, and the nearest adjacent population, in the Colville River. Three microsatellite loci from the nuclear genome, and the NADH-1 gene of mitochondrial DNA (mtDNA), were analyzed. Diploid genotypes were determined with PCR amplification of the microsatellite loci, and mtDNA genotypes were identified with PCR amplification followed by sequencing of 798 nucleotides. Several alleles were identified at each locus and both populations had high levels of genetic variation. There is significant differentiation of the Sagavanirktok River and Colville River broad whitefish stocks for the three microsatellite loci (FST = 0.031) but not mtDNA (FST < 0.001). Possible explanations for the lower level of differentiation of mtDNA than microsatellites include female-mediated gene flow between populations, skewed sex ratios, natural selection, or mutation. The results indicate that there is limited gene flow between the Colville and Sagavanirktok rivers, which represent semi-isolated spawning populations.


2020 ◽  
Vol 85 (4) ◽  
pp. 895-901
Author(s):  
Takamitsu Amai ◽  
Tomoka Tsuji ◽  
Mitsuyoshi Ueda ◽  
Kouichi Kuroda

ABSTRACT Mitochondrial dysfunction can occur in a variety of ways, most often due to the deletion or mutation of mitochondrial DNA (mtDNA). The easy generation of yeasts with mtDNA deletion is attractive for analyzing the functions of the mtDNA gene. Treatment of yeasts with ethidium bromide is a well-known method for generating ρ° cells with complete deletion of mtDNA from Saccharomyces cerevisiae. However, the mutagenic effects of ethidium bromide on the nuclear genome cannot be excluded. In this study, we developed a “mito-CRISPR system” that specifically generates ρ° cells of yeasts. This system enabled the specific cleavage of mtDNA by introducing Cas9 fused with the mitochondrial target sequence at the N-terminus and guide RNA into mitochondria, resulting in the specific generation of ρ° cells in yeasts. The mito-CRISPR system provides a concise technology for deleting mtDNA in yeasts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marino Maemura ◽  
Hiroaki Taketsuru ◽  
Yuki Nakajima ◽  
Ruiqi Shao ◽  
Ayaka Kakihara ◽  
...  

AbstractIn multicellular organisms, oocytes and sperm undergo fusion during fertilization and the resulting zygote gives rise to a new individual. The ability of zygotes to produce a fully formed individual from a single cell when placed in a supportive environment is known as totipotency. Given that totipotent cells are the source of all multicellular organisms, a better understanding of totipotency may have a wide-ranging impact on biology. The precise delineation of totipotent cells in mammals has remained elusive, however, although zygotes and single blastomeres of embryos at the two-cell stage have been thought to be the only totipotent cells in mice. We now show that a single blastomere of two- or four-cell mouse embryos can give rise to a fertile adult when placed in a uterus, even though blastomere isolation disturbs the transcriptome of derived embryos. Single blastomeres isolated from embryos at the eight-cell or morula stages and cultured in vitro manifested pronounced defects in the formation of epiblast and primitive endoderm by the inner cell mass and in the development of blastocysts, respectively. Our results thus indicate that totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage.


2021 ◽  
Vol 22 (1) ◽  
pp. 460
Author(s):  
Huan Ou-Yang ◽  
Shinn-Chih Wu ◽  
Li-Ying Sung ◽  
Shiao-Hsuan Yang ◽  
Shang-Hsun Yang ◽  
...  

The maternal-to-zygotic transition (MZT), which controls maternal signaling to synthesize zygotic gene products, promotes the preimplantation development of mouse zygotes to the two-cell stage. Our previous study reported that mouse granzyme g (Gzmg), a serine-type protease, is required for the MZT. In this study, we further identified the maternal factors that regulate the Gzmg promoter activity in the zygote to the two-cell stage of mouse embryos. A full-length Gzmg promoter from mouse genomic DNA, FL-pGzmg (−1696~+28 nt), was cloned, and four deletion constructs of this Gzmg promoter, Δ1-pGzmg (−1369~+28 nt), Δ2-pGzmg (−939~+28 nt), Δ3-pGzmg (−711~+28 nt) and Δ4-pGzmg (−417~+28 nt), were subsequently generated. Different-sized Gzmg promoters were used to perform promoter assays of mouse zygotes and two-cell stage embryos. The results showed that Δ4-pGzmg promoted the highest expression level of the enhanced green fluorescent protein (EGFP) reporter in the zygotes and two-cell embryos. The data suggested that time-specific transcription factors upregulated Gzmg by binding cis-elements in the −417~+28-nt Gzmg promoter region. According to the results of the promoter assay, the transcription factor binding sites were predicted and analyzed with the JASPAR database, and two transcription factors, signal transducer and activator of transcription 3 (STAT3) and GA-binding protein alpha (GABPα), were identified. Furthermore, STAT3 and GABPα are expressed and located in zygote pronuclei and two-cell nuclei were confirmed by immunofluorescence staining; however, only STAT3 was recruited to the mouse zygote pronuclei and two-cell nuclei injected with the Δ4-pGzmg reporter construct. These data indicated that STAT3 is a maternal transcription factor and may upregulate Gzmg to promote the MZT. Furthermore, treatment with a STAT3 inhibitor, S3I-201, caused mouse embryonic arrest at the zygote and two-cell stages. These results suggest that STAT3, a maternal protein, is a critical transcription factor and regulates Gzmg transcription activity in preimplantation mouse embryos. It plays an important role in the maternal-to-zygotic transition during early embryonic development.


2021 ◽  
Vol 22 (9) ◽  
pp. 4594
Author(s):  
Andrea Stoccoro ◽  
Fabio Coppedè

Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.


Genome ◽  
1989 ◽  
Vol 31 (1) ◽  
pp. 155-159 ◽  
Author(s):  
H. Bertrand ◽  
A. J. F. Griffiths

In some field isolates of Neurospora from Hawaii and India, senescence is induced by integration of linear DNA plasmids, kalilo and maranhar, respectively, into mitochondrial (mt) DNA. Although the two plasmids show little homology at the DNA level, both have inverted long terminal repeats, and each potentially encodes a DNA polymerase and a RNA polymerase. Both plasmids generate very long inverted repeats of mtDNA at their ends upon integration into mitochondrial chromosomes. Hence, they appear to integrate by a mechanism that involves pairing of both ends of the plasmid with short stretches of homologous nucleotide sequences in mtDNA. This recombinogenic association apparently generates an origin for an unscheduled round of replication of mtDNA. In the process, the resulting two copies of the mitochondrial chromosome are joined to opposite ends of the plasmid. A model for the senescence-associated accumulation of mtDNAs with plasmid insertion sequences is proposed on the basis of common features that characterize senescence in a variety of filamentous fungi.Key words: Neurospora, senescence, plasmids, mitochondria.


1982 ◽  
Vol 2 (1) ◽  
pp. 30-41
Author(s):  
N A Oliver ◽  
D C Wallace

Two mitochondrially synthesized marker polypeptides, MV-1 and MV-2, were found in human HeLa and HT1080 cells. These were assigned to the mitochondrial DNA in HeLa-HT1080 cybrids and hybrids by demonstrating their linkage to cytoplasmic genetic markers. These markers include mitochondrial DNA restriction site polymorphisms and resistance to chloramphenicol, an inhibitor of mitochondrial protein synthesis. In the absence of chloramphenicol, the expression of MV-1 and MV-2 in cybrids and hybrids was found to be directly proportional to the ratio of the parental mitochondrial DNAs. In the presence of chloramphenicol, the marker polypeptide linked to the chloramphenicol-sensitive mitochondrial DNA continued to be expressed. This demonstrated that resistant and sensitive mitochondrial DNAs can cooperate within a cell for gene expression and that the CAP-resistant allele was dominant or codominant to sensitive. Such cooperation suggests that mitochondrial DNAs can be exchanged between mitochondria.


2002 ◽  
Vol 80 (7) ◽  
pp. 618-624 ◽  
Author(s):  
P Jacquet ◽  
J Buset ◽  
J Vankerkom ◽  
S Baatout ◽  
L de Saint-Georges ◽  
...  

PCC (premature chromosome condensation) can be used for visualizing and scoring damage induced by radiation in the chromatin of cells undergoing a G1 or G2 arrest. A method involving the fusion of irradiated single embryonic cells with single MI oocytes was used to induce PCC in mouse zygotes of the BALB/c strain, which suffer a drastic G2 arrest after X-irradiation (dose used 2.5 Gy). Other G2-arrested embryos were exposed in vitro to the phosphatase inhibitor calyculin A. Both methods furnished excellent chromosome preparations of the G2-arrested embryos. The mean number of chromosome fragments did not change significantly during G2 arrest, suggesting that zygotes of this strain are unable to repair DNA damage leading to such aberrations. Forty to fifty percent of the irradiated embryos were unable to cleave after G2 arrest and remained blocked at the one-cell stage for a few days before dying. PCC preparations obtained from such embryos suggested that about 30% of them had undergone a late mitosis not followed by cytokinesis and had entered a new DNA synthesis. These results are discussed in the light of recent observations in irradiated human cells deficient in the p53/14-3-3sigma pathway.Key words: PCC, embryo, oocyte, calyculin A, G2 arrest, cytokinesis.


Genetics ◽  
1988 ◽  
Vol 120 (2) ◽  
pp. 485-494
Author(s):  
A F MacRae ◽  
W W Anderson

Abstract Mitochondrial DNA (mtDNA) haplotypes usually are assumed to be neutral, unselected markers of evolving female lineages. This assumption was tested by monitoring haplotype frequencies in 12 experimental populations of Drosophila pseudoobscura which were polymorphic for mtDNA haplotypes. Populations were maintained for at least 10 generations, and in one case for 32 generations, while tests of mtDNA selective neutrality were conducted. In an initial population, formed from a mixture of two strains with different mitochondrial haplotypes, the frequency of the Bogota haplotype increased 46% in 3 generations, reaching an apparent equilibrium frequency of 82% after 32 generations. Perturbation of this equilibrium by addition of the less common haplotype resulted in a rapid, dramatic increase in frequency of the second haplotype, and a return to essentially the same equilibrium frequency as before perturbation. This behavior is not consistent with mtDNA neutrality, nor is the equilibrium consistent with a simple model of constant selection on the haploid mtDNAs. Replicate cage experiments with mtDNA haplotypes did not always generate the same result as the initial cage. Several lines of evidence, including manipulations of the nuclear genome, support the idea that both nuclear and mitochondrial genomes are involved in the dramatic mtDNA frequency changes. In another experiment, strong female viability selection was implicated via mtDNA frequency changes. Although the causes of the dramatic mtDNA frequency changes in our populations are not obvious, it is clear that Drosophila mitochondrial haplotypes are not always simply neutral markers. Our findings are relevant to the introduction of a novel mtDNA variant from one species or one population into another. Such introductions could be strongly favored by selection, even if it is sporadic.


2021 ◽  
Vol 10 (19) ◽  
pp. 416-421
Author(s):  
Ruchi Upadhyay ◽  
Ratika Srivastava

The investigation of mitochondrial DNA (Mt-DNA) alterations could impart light on the involvement of mitochondria in the pathophysiology of Systemic Lupus Erythematosus. The purpose of this study is to examine the peripheral blood mitochondrial DNA copy number variation in Lupus Nephritis patients and also to find out it’s correlation with amount of protein present in urine. The significant correlation could aid in the inspection of mitochondrial involvement, particularly in Lupus Nephritis. Two mitochondrial genes encoding MT-CYT and MT-TL1 were measured quantitatively by qRT-PCR in whole blood of 17 SLE patients and 15 healthy subjects with similar gender (female: male ratio) and age group. The amount of mitochondrial genes MT-CYT and MT-TL1 was 1.69 and 1.26 fold higher respectively in patients. The significantly higher amount of protein detected in lupus nephritis patients (129.4±116.4 mg/dl) in comparison to normal subjects (25.3 ±10.7 mg/dl). No significant correlation was established between Mt-DNA quantity and proteinuria. Alteration in mitochondrial genes reflects the possibilities of altered mitophagy or mitochondrial biosynthesis during SLE. These findings are required to be further validated by studying mitophagy and biogenesis during SLE in details.


Sign in / Sign up

Export Citation Format

Share Document