Effects of Protective Capping on Ultra-Thin SIMOX Structures

1999 ◽  
Vol 5 (S2) ◽  
pp. 744-745
Author(s):  
T. Wilson ◽  
J. Jiao ◽  
S. Seraphin ◽  
B. Johnson ◽  
M. Anc ◽  
...  

Devices for character recognition as well as cellular phones require computational elements that work at higher speeds with lower current requirements. Separation by IMplanted Oxygen (SIMOX) is one type of Silicon On Insulator (SOI) technology that shows great promise in meeting the future demands for faster and more efficient applications. The ultra-thin SIMOX substrates produced by low energy/low dose implant methods make possible the construction of large scale integrated circuits with fully depleted CMOS devices. One of the great challenges in the production of SIMOX technology is achieving high quality Si and Si02 layers. High energy implantation of 0+ ions causes damage to the Si crystal and therefore requires a high temperature annealing step to repair it. Annealing of SIMOX takes place in a mixed atmosphere of argon and oxygen. Having oxygen in the ambient creates a superficial Si02 layer. This reduces the thickness of the SOI layer but also protects the surface from pitting.

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1531 ◽  
Author(s):  
Chang Cai ◽  
Shuai Gao ◽  
Peixiong Zhao ◽  
Jian Yu ◽  
Kai Zhao ◽  
...  

Radiation effects can induce severe and diverse soft errors in digital circuits and systems. A Xilinx commercial 16 nm FinFET static random-access memory (SRAM)-based field-programmable gate array (FPGA) was selected to evaluate the radiation sensitivity and promote the space application of FinFET ultra large-scale integrated circuits (ULSI). Picosecond pulsed laser and high energy heavy ions were employed for irradiation. Before the tests, SRAM-based configure RAMs (CRAMs) were initialized and configured. The 100% embedded block RAMs (BRAMs) were utilized based on the Vivado implementation of the compiled hardware description language. No hard error was observed in both the laser and heavy-ion test. The thresholds for laser-induced single event upset (SEU) were ~3.5 nJ, and the SEU cross-sections were correlated positively to the laser’s energy. Multi-bit upsets were measured in heavy-ion and high-energy laser irradiation. Moreover, latch-up and functional interrupt phenomena were common, especially in the heavy-ion tests. The single event effect results for the 16 nm FinFET process were significant, and some radiation tolerance strategies were required in a radiation environment.


1983 ◽  
Vol 27 ◽  
Author(s):  
Russell F. Pinizzotto

ABSTRACTSilicon-on-Insulator structures will be an important technological advance used in future VLSI, VHSIC and threedimensional integrated circuits. The most mature SOI technology other than silicon-on-sapphire is SIMOX, or Separation by Implanted Oxygen. High energy oxygen ions are implanted into single crystal silicon until a stoichiometric buried silicon dioxide layer is formed. After implantation, the material is annealed at high temperature to remove implantation induced defects. The structure is completed by the growth of a thin epitaxial silicon layer. Devices and complex circuits have been successfully fabricated by several research groups. This paper reviews the development of this buried oxide SOI technology from 1973 to 1983. The five major sections discuss the advantages of SOI, the basics of buried oxide formation, the literature published between 1973 and 1983, key issues that must be solved before large scale implementation takes place and, finally, predictions of future developments.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


2001 ◽  
Vol 21 (02) ◽  
pp. 77-81 ◽  
Author(s):  
G. Finazzi

SummaryThrombotic events are a major clinical problem for patients with antiphospholipid antibodies (APA). However, current recommendations for their prevention and treatment are still based on retrospective studies. Data from large scale, prospective clinical trials are required to ultimately identify the optimal management of these patients. To date, at least four randomized studies are underway. The WAPS and PAPRE clinical trials are aimed to establish the correct duration and intensity of oral anticoagulation in APA patients with major arterial or venous thrombosis. The WARSS-APASS is a collaborative study to evaluate the efficacy and safety of aspirin or low-dose oral anticoagulants in preventing the recurrence of ischemic stroke. The recently announced UK Trial compares low-dose aspirin with or without low-intensity anticoagulation for the primary prevention of vascular events in APA-positive patients with SLE or adverse pregnancy history, but still thrombosis-free. It is hoped that the results of these trials will be available soon since clinicians urgently need more powerful data to treat their patients with the APA syndrome.


Author(s):  
H.W. Ho ◽  
J.C.H. Phang ◽  
A. Altes ◽  
L.J. Balk

Abstract In this paper, scanning thermal conductivity microscopy is used to characterize interconnect defects due to electromigration. Similar features are observed both in the temperature and thermal conductivity micrographs. The key advantage of the thermal conductivity mode is that specimen bias is not required. This is an important advantage for the characterization of defects in large scale integrated circuits. The thermal conductivity micrographs of extrusion, exposed and subsurface voids are presented and compared with the corresponding topography and temperature micrographs.


2015 ◽  
Vol 51 (91) ◽  
pp. 16381-16384 ◽  
Author(s):  
Yuelong Xin ◽  
Liya Qi ◽  
Yiwei Zhang ◽  
Zicheng Zuo ◽  
Henghui Zhou ◽  
...  

A novel organic solvent-assisted freeze-drying pathway, which can effectively protect and uniformly distribute active particles, is developed to fabricate a free-standing Li2MnO3·LiNi1/3Co1/3Mn1/3O2 (LR)/rGO electrode on a large scale.


Author(s):  
Zhiqiang Luo ◽  
Silin Zheng ◽  
Shuo Zhao ◽  
Xin Jiao ◽  
Zongshuai Gong ◽  
...  

Benzoquinone with high theoretical capacity is anchored on N-plasma engraved porous carbon as a desirable cathode for rechargeable aqueous Zn-ion batteries. Such batteries display tremendous potential in large-scale energy storage applications.


Sign in / Sign up

Export Citation Format

Share Document