The Impact of Dust/Gas Ratios on Chromospheric Activity in Red Giant and Supergiant Stars

2018 ◽  
Vol 14 (S343) ◽  
pp. 365-367
Author(s):  
Kenneth G. Carpenter ◽  
Gioia Rau

AbstractStencel et al. (1986) analyzed IUE spectra of a modest set of cool stars and found that they continue to produce chromospheres even in the presence of high dust levels in their outer atmospheres. This reversed the previous results of Jennings (1973) and Jennings & Dyck (1972). We describe an on-going extension of these studies to a sample of stars representing a broader range in dust/gas ratios, using archival IUE and archival and new HST data on both RGB and AGB stars. Surface fluxes in emission lines will be analyzed to assess the chromospheric activity and obscuration by dust in each star, as those fluxes will follow a different pattern for reduced activity (temperature/density dependent) vs. dust obscuration (wavelength dependent). Wind characteristics will be measured by modeling of wind-reversed chromospheric emission lines.

Author(s):  
Graeme H. Smith

AbstractIt is shown that upon combining GALEX far-ultraviolet and Johnson B magnitudes a resultant FUV–B colour can be obtained that for red giant stars of luminosity classes III and II correlates well with chromospheric emission in the cores of the Mg iih and k lines. Giant stars throughout the colour range 0.8 ≤ B – V ≤ 1.6 exhibit such a phenomenon. The main result of this paper is to show that GALEX far-ultraviolet photometry can provide information about the degree of chromospheric activity among red giant stars, and as such may offer a tool for surveying the evolution of chromospheric activity from the main sequence into the red giant phases of stellar evolution.


1999 ◽  
Vol 30 (2) ◽  
pp. 129-146 ◽  
Author(s):  
N. R. Nawaz ◽  
A. J. Adeloye ◽  
M. Montaseri

In this paper, we report on the results of an investigation into the impacts of climate change on the storage-yield relationships for two multiple-reservoir systems, one in England and the other in Iran. The impact study uses established protocol and obtains perturbed monthly inflow series using a simple runoff coefficient approach which accounts for non-evaporative losses in the catchment, and a number of recently published GCM-based scenarios. The multi-reservoir analysis is based on the sequent-peak algorithm which has been modified to analyse multiple reservoirs and to accommodate explicitly performance norms and reservoir surface fluxes, i.e. evaporation and rainfall. As a consequence, it was also possible to assess the effect of including reservoir surface fluxes on the storage-yield functions. The results showed that, under baseline conditions, consideration of net evaporation will require lower storages for the English system and higher storages for the Iranian system. However, with perturbed hydroclimatology different impacts were obtained depending on the systems' yield and reliability. Possible explanations are offered for the observed behaviours.


2002 ◽  
Vol 12 ◽  
pp. 676-679
Author(s):  
Ruth C. Peterson

AbstractRecent results are reviewed for two methods of luminosity calibration based on high-resolution spectroscopy. The first relies onTeff/loggdeterminations from model-atmosphere analyses based on high-resolution spectra. This method is physically well founded but operationally demanding, and requires advance knowledge of stellar mass. The second, W-B, stems from the empirical relationship between luminosity and the width of chromospheric emission lines first established by Wilson and Bappu. Its physical basis is only partially understood, however, and the calibration depends on stellar metallicity and on the choice of lines.BothTeff/loggand W-B easily distinguish cool dwarfs from cool giants. Generally reasonable agreement is found between distances derived from Hipparcos parallaxes and those inferred from the loggvalues derived for nearby dwarfs with relatively well-known Hipparcos parallaxes, σ(π)/π < 0.2. Constraining Hipparcos parallaxes star-by-star is not possible at present. Improvements are suggested for both approaches.


2021 ◽  
Author(s):  
Etienne Gaborit ◽  
Murray MacKay ◽  
Camille Garnaud ◽  
Vincent Fortin

<p>This study aims at assessing the impact of a new lake model on streamflow simulations performed with the GEM-Hydro hydrologic model developed at ECCC. GEM-Hydro is at the heart of the National Surface and River Prediction System (NSRPS) which ECCC uses to forecast river flows over most of Canada. The GEM-Hydro model mainly consists of the GEM-Surf component to represent surface processes, and of the Watroute model to represent river and lake routing, in order to perform streamflow simulations and forecasts. The surface component of GEM-Hydro can simulate 5 different types of surfaces.  Currently, the water tile consists of a very simple algorithm which, in terms of water balance, consists of producing runoff fluxes simply equal to precipitation minus evaporation. This runoff over water surfaces is then provided as input, along with runoff and drainage generated over other surface tiles, to the Watroute model. The Watroute version used in GEM-Hydro currently only represents major lakes (area greater than 100km<sup>2</sup>) along the river networks, and does not represent the impact that small lakes can have on streamflow, which mainly consists in slowing down runoff before it reaches the main streams of the network.</p><p>Recently, the Canadian Small Lake Model (CSLM) was implemented in the surface component of GEM-Hydro to represent the energy and water balance over water tiles more accurately. So far, CSLM simulations have been shown promising in terms of evaporation, ice cover, absolute and dew point temperature simulations, compared with the former algorithm used over water. However, the impact of CSLM on the resulting streamflow simulations performed with GEM-Hydro has not been evaluated yet. This study aims first at evaluating the impact of CSLM on streamflow simulations, and secondly at testing different CSLM configurations as well as different coupling strategies with Watroute, with the objective of finding the best set up for the prediction of streamflow in Canada. For example, overland runoff generated by the land tile can be provided to the water tile of the same grid point in different ways, and the outflow computed at the outlet of the water tile can be computed with different parameters. Moreover, different outflow computations have to be taken into account depending on if the water tile of a grid point represents subgrid-scale lakes, or if on the contrary it belongs to a lake spanning over multiple model grid points.</p><p>To do so, different GEM-Hydro open-loop simulations have been performed on the Lake of the Woods watershed, located in Canada, with and without CSLM to represent water tiles. The CSLM configurations leading to the best results are presented here. CSLM simulations are also evaluated in terms of surface fluxes, to ensure that the main purpose of the model, which is to improve surface fluxes to ultimately improve atmospheric forecasts, is preserved, compared to the default configuration of the model. Ideas for further improving the coupling between the GEM-Hydro surface and routing components, in terms of lake processes, are also presented and will be tested in future work.</p>


2015 ◽  
Vol 8 (8) ◽  
pp. 3433-3445 ◽  
Author(s):  
J. R. Worden ◽  
A. J. Turner ◽  
A. Bloom ◽  
S. S. Kulawik ◽  
J. Liu ◽  
...  

Abstract. Evaluating surface fluxes of CH4 using total column data requires models to accurately account for the transport and chemistry of methane in the free troposphere and stratosphere, thus reducing sensitivity to the underlying fluxes. Vertical profiles of methane have increased sensitivity to surface fluxes because lower tropospheric methane is more sensitive to surface fluxes than a total column, and quantifying free-tropospheric CH4 concentrations helps to evaluate the impact of transport and chemistry uncertainties on estimated surface fluxes. Here we demonstrate the potential for estimating lower tropospheric CH4 concentrations through the combination of free-tropospheric methane measurements from the Aura Tropospheric Emission Spectrometer (TES) and XCH4 (dry-mole air fraction of methane) from the Greenhouse gases Observing SATellite – Thermal And Near-infrared for carbon Observation (GOSAT TANSO, herein GOSAT for brevity). The calculated precision of these estimates ranges from 10 to 30 ppb for a monthly average on a 4° × 5° latitude/longitude grid making these data suitable for evaluating lower-tropospheric methane concentrations. Smoothing error is approximately 10 ppb or less. Comparisons between these data and the GEOS-Chem model demonstrate that these lower-tropospheric CH4 estimates can resolve enhanced concentrations over flux regions that are challenging to resolve with total column measurements. We also use the GEOS-Chem model and surface measurements in background regions across a range of latitudes to determine that these lower-tropospheric estimates are biased low by approximately 65 ppb, with an accuracy of approximately 6 ppb (after removal of the bias) and an actual precision of approximately 30 ppb. This 6 ppb accuracy is consistent with the accuracy of TES and GOSAT methane retrievals.


2006 ◽  
Vol 10 (19) ◽  
pp. 1-17 ◽  
Author(s):  
Julia Pongratz ◽  
Lahouari Bounoua ◽  
Ruth S. DeFries ◽  
Douglas C. Morton ◽  
Liana O. Anderson ◽  
...  

Abstract The sensitivity of surface energy and water fluxes to recent land cover changes is simulated for a small region in northern Mato Grosso, Brazil. The Simple Biosphere Model (SiB2) is used, driven by biophysical parameters derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 250-m resolution, to compare the effects of different land conversion types. The mechanisms through which changes in vegetation alter surface fluxes of energy, momentum, water, and carbon are analyzed for both wet and dry seasons. It is found that morphological changes contribute to warming and drying of the atmosphere while physiological changes, particularly those associated with a plant’s photosynthetic pathway, counterbalance or exacerbate the warming depending on the type of conversion and the season. Furthermore, this study’s results indicate that initial clearing of evergreen and transition forest to bare ground increases canopy temperature by up to 1.7°C. For subsequent land use such as pasture or cropland, the largest effect is seen for the conversion of evergreen forest to C3 cropland during the wet season, with a 21% decrease of the latent heat flux and 0.4°C increase in canopy temperature. The secondary conversion of pasture to cropland resulted in slight warming and drying during the wet season driven mostly by the change in carbon pathway from C4 to C3. For all conversions types, the daily temperature range is amplified, suggesting that plants replacing forest clearing require more temperature tolerance than the trees they replace. The results illustrate that the effect of deforestation on climate depends not only on the overall extent of clearing but also on the subsequent land use type.


1983 ◽  
Vol 71 ◽  
pp. 251-254 ◽  
Author(s):  
Robert E. Stencel

ABSTRACTEvidence for magnetic surface activity among cool stars of low gravity is discussed.


2018 ◽  
Vol 73 (2) ◽  
pp. 203-213 ◽  
Author(s):  
Jhonatha R. dos Santos ◽  
Jonas Jakutis Neto ◽  
N. Rodrigues ◽  
M.G. Destro ◽  
José W. Neri ◽  
...  

In this work, we suggest a methodology to determine the impact parameter for neutral dysprosium emission lines from the characterization of the plasma generated by laser ablation in a sealed chamber filled with argon. The procedure is a combination of known consistent spectroscopic methods for plasma temperature determination, electron density, and species concentration. With an electron density of 3.1 × 1018 cm–3 and temperature close to 104 K, we estimated the impact electron parameter for nine spectral lines of the neutral dysprosium atom. The gaps in the impact parameter data in the literature, mainly for heavy elements, stress the importance of the proposed method.


2020 ◽  
Vol 21 (12) ◽  
pp. 2829-2853 ◽  
Author(s):  
Marouane Temimi ◽  
Ricardo Fonseca ◽  
Narendra Nelli ◽  
Michael Weston ◽  
Mohan Thota ◽  
...  

AbstractA thorough evaluation of the Weather Research and Forecasting (WRF) Model is conducted over the United Arab Emirates, for the period September 2017–August 2018. Two simulations are performed: one with the default model settings (control run), and another one (experiment) with an improved representation of soil texture and land use land cover (LULC). The model predictions are evaluated against observations at 35 weather stations, radiosonde profiles at the coastal Abu Dhabi International Airport, and surface fluxes from eddy-covariance measurements at the inland city of Al Ain. It is found that WRF’s cold temperature bias, also present in the forcing data and seen almost exclusively at night, is reduced when the surface and soil properties are updated, by as much as 3.5 K. This arises from the expansion of the urban areas, and the replacement of loamy regions with sand, which has a higher thermal inertia. However, the model continues to overestimate the strength of the near-surface wind at all stations and seasons, typically by 0.5–1.5 m s−1. It is concluded that the albedo of barren/sparsely vegetated regions in WRF (0.380) is higher than that inferred from eddy-covariance observations (0.340), which can also explain the referred cold bias. At the Abu Dhabi site, even though soil texture and LULC are not changed, there is a small but positive effect on the predicted vertical profiles of temperature, humidity, and horizontal wind speed, mostly between 950 and 750 hPa, possibly because of differences in vertical mixing.


2019 ◽  
Author(s):  
Pierre Gentine ◽  
Adam Massmann ◽  
Benjamin R. Lintner ◽  
Sayed Hamed Alemohammad ◽  
Rong Fu ◽  
...  

Abstract. The continental tropics play a leading role in the terrestrial water and carbon cycles. Land–atmosphere interactions are integral in the regulation of surface energy, water and carbon fluxes across multiple spatial and temporal scales over tropical continents. We review here some of the important characteristics of tropical continental climates and how land–atmosphere interactions regulate them. Along with a wide range of climates, the tropics manifest a diverse array of land–atmosphere interactions. Broadly speaking, in tropical rainforests, light and energy are typically more limiting than precipitation and water supply for photosynthesis and evapotranspiration; whereas in savanna and semi-arid regions water is the critical regulator of surface fluxes and land–atmosphere interactions. We discuss the impact of the land surface, how it affects shallow clouds and how these clouds can feedback to the surface by modulating surface radiation. Some results from recent research suggest that shallow clouds may be especially critical to land–atmosphere interactions as these regulate the energy budget and moisture transport to the lower troposphere, which in turn affects deep convection. On the other hand, the impact of land surface conditions on deep convection appear to occur over larger, non-local, scales and might be critically affected by transitional regions between the climatologically dry and wet tropics.


Sign in / Sign up

Export Citation Format

Share Document