Growth performance of broilers consuming wheat- or barley-based diets with or without enzymes

2009 ◽  
Vol 2009 ◽  
pp. 217-217 ◽  
Author(s):  
M S Anjum ◽  
A S Chaudhry ◽  
M R Virk

Cereal grains, such as wheat, have been regarded as one of the most affordable ingredients to supply dietary energy for fast growing broilers. However, broilers compete with humans for wheat to satisfy their nutritional needs and also they cannot effectively utilise wheat due to the limited ability of their gut enzymes to utilise dietary fibre. The efficiency of wheat utilisation can be increased by adding exogenous enzymes into cereal based diets for these birds (Annison and Choct, 1993). These enzymes can also reduce fermentation in the small intestine and so help maintain the gut health. Therefore, we compared the effect of adding a commercial fibrolytic enzyme to wheat and barley-based diets on the utilisation of either diet by broilers from 0 to 35 days of age.

2020 ◽  
Vol 23 (2) ◽  
pp. 117-128
Author(s):  
I. Varzaru ◽  
T.D. Panaite ◽  
A.E. Untea

Abstract The composition of gastrointestinal tract microbiota can be changed by dietary manipulation, to prevent gut health issues and to promote animal performance. This study was conducted to investigate the effects of rice bran and alfalfa meal on growth performance and intestinal microbiota in broilers. A total of 252 Cobb 500 broilers, aged 14 days, were randomly assigned into 3 groups: control (CON), 5 % rice bran (RB), 5 % alfalfa meal (AM), and housed in an environment-controlled hall 42 days. Throughout the experimental period, grow performance parameters were monitored and at the end relative weights of internal organs were measured. Samples of intestinal content were collected for bacteriological determinations. Feed intake, daily weight gain and viability were not significantly affected by the dietary supplements. Alfalfa meal and rice bran decreased the populations of Escherichia coli and staphylococci in small intestine content, and Enterobacteriaceae, Escherichia coli and staphylococci in caecal content of broilers. The count of lactobacilli in both small intestine and caecal content registered a significantly increase in experimental groups, compared to CON group. Supplementation of diets with rice bran and alfalfa meal tended to increase the population of beneficial bacteria and inhibit the potential pathogens.


2020 ◽  
Vol 60 (2) ◽  
pp. 288
Author(s):  
Qing-Chang Ren ◽  
Jing-Jing Xuan ◽  
Chuan-Yan Che ◽  
Xin-Chao Yan ◽  
Zhong-Ze Hu

In this trial we aimed to assess the effects of dietary supplementation of 4-O-methyl-glucuronoarabinoxylan (4OMG) on growth performance, thigh meat quality and small intestine development of female Partridge-Shank broilers. A total of 240 1-day-old female Partridge-Shank broilers were randomly distributed to four groups with three replicates of 20 within each group. Groups received either 0, 15, 20 or 25 g 4OMG/kg DM of diet. During the whole experiment of 60 days, broilers had ad libitum access to water and feed. At pen level, feed intake was recorded daily and broilers were weighed at the start and end of the experiment. For each group, three pens with a total of 20 broilers were randomly selected to determine the thigh meat quality and the small intestine development of broilers. Broilers fed diets with higher 4OMG had greater final liveweight (P = 0.004), daily bodyweight gain (P = 0.004) and gain-to-feed ratio (P < 0.001), muscle pH values (P = 0.031) and redness (P = 0.001), duodenal weight index (P = 0.042), jejunal (P = 0.043) and ileal length (P = 0.049), duodenal (P < 0.001) and ileal villus height (P = 0.008), but lower percentage of dead birds (P < 0.001), drip loss (P = 0.042) and shear force value (P = 0.043) of the thigh muscles. These results indicate that increasing dietary supplementation of 4OMG may improve growth performance and meat quality of female Partridge-Shank broilers through better development of small intestine.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1123 ◽  
Author(s):  
Haibo Wang ◽  
Hang Li ◽  
Fei Wu ◽  
Xinjun Qiu ◽  
Zhantao Yu ◽  
...  

The objective of this study was to evaluate the effects of dietary energy levels on growth performance, rumen fermentation and bacterial community, and meat quality of Holstein-Friesians bulls slaughtered at different ages. Thirty-six Holstein-Friesians bulls (17 months of age) were divided into a 3 × 3 factorial experiment with three energy levels (LE, ME and HE; metabolizable energy is 10.12, 10.90 and 11.68 MJ/kg, respectively) of diets, and three slaughter ages (20, 23 and 26 months). Results indicated that bulls fed with ME and HE diets had higher dry matter intake, average daily gain, and dressing percentage at 23 or 26 months of age. The ME and HE diets also reduced bacterial diversity, altered relative abundances of bacteria and produced lower concentrations of acetate, but higher butyrate and valerate concentrations in rumen fluid. Increasing in dietary energy and slaughter age increased the intramuscular fat (IMF) and water holding capacity. In summary, Holstein-Friesians bulls fed with ME and HE diets, slaughtered at 23 and 26 months of age could be a good choice to produce beef with high IMF. Slaughter age may have less influence than dietary energy in altering fermentation by increasing amylolytic bacteria and decreasing cellulolytic bacteria, and thus, further affecting meat quality.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 327
Author(s):  
Zhen-Wei Zhang ◽  
Yan-Lu Wang ◽  
Yong-Yan Chen ◽  
Luo-Tong Zhang ◽  
Ying-Jie Zhang ◽  
...  

This study was conducted to evaluate the dietary supplemental effects of 2-nitroethanol (NEOH) in comparison with monensin on methane (CH4) emission, growth performance and carcass characteristics in female lambs. Sixty female, small-tailed Chinese Han lambs (3.5 ± 0.3 month) were randomly allotted into three dietary treatment groups: (1) Control group, a basal control diet, (2) monensin group, the basal diet added with 40 mg/kg monensin, (3) NEOH group, the basal diet added with 277 mg/kg nitroethanol, and the feedlotting trial lasted for 70 days. Although dietary addition of monensin and NEOH did not affect nutrient digestibility of lambs, both monensin and NEOH decreased the calculated CH4 production (12.7% vs. 17.4% decrease; p < 0.01). In addition, the CH4 production represents less dietary energy loss in the monensin and NEOH group than in the control, indicating that monensin and NEOH are potent CH4 inhibitors that can reduce dietary energy loss. Dietary addition of monensin and NEOH decreased dry matter intake (p < 0.01); however, they increased the ADG of female lambs (p < 0.01). As a result, both monensin and NEOH increased feed conversion efficiency of the feedlotting lambs (p < 0.01), suggesting that feed energy saved from CH4 production promoted the feed efficiency and ADG in the present study. Except for the fact that NEOH addition increased the net muscle percentage to carcass weight (p = 0.03), neither monensin nor NEOH had a significant influence on carcass characteristics of female lambs (p > 0.05). From an economic point of view, NEOH and monensin caused a reduction in feed consumption costs, therefore resulting in a higher net revenue and economic efficiency than the control. In summary, dietary supplementation of NEOH in comparison with monensin presented a more promoting effect on energy utilization in female lambs by inhibiting rumen methanogenesis more efficiently, and NEOH improved the net revenue and economic efficiency more significantly than monensin.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 175-176
Author(s):  
Joaquin J Sanchez Zannatta ◽  
L F Wang ◽  
Eduardo Beltranena ◽  
Aaron D Beattie ◽  
Rex N Newkirk ◽  
...  

Abstract Barley grain containing more fermentable starch or fiber might be an attractive energy source in weaned pig diets due to benefits on gut health. Barley rapidly-fermentable carbohydrates may serve as prebiotic and slowly-fermentable fiber may decrease diarrhea in weaned pigs. Steam-explosion processing may disrupt the fiber matrix of hulls, increasing slowly-fermentable fiber of barley. To explore, 220 pigs were fed 1 of 5 diets containing 60% cereal grain: 1) low-fermentable hulled barley (LFB); 2) LFB steam-exploded (LFB-E; 1.2 MPa, 120 s); 3) high β-glucan (10% DM) hull-less barley (HFB); 4) high amylose (17% DM) hull-less barley (HFA); or 5) low-fermentable wheat (LFW). Diets were fed starting 1-week post-weaning and formulated to provide 2.4 and 2.3 Mcal net energy (NE)/kg, 5.5 and 5.1 g standardized ileal digestible lysine/Mcal NE for phase 1 (day 1–14) and phase 2 (day 15–35), respectively. For the entire trial (day 1–35), average daily feed intake (ADFI) and average daily gain (ADG) of pigs did not differ among diets. Gain:feed (G:F) did not differ between LFB and LFW diets, but steam-explosion of hulled barley reduced (P &lt; 0.05) G:F. Feces consistency did not differ between LFB and LFW diets, but was better (P &lt; 0.05) for LFB than HFB, HFA and LFB-E diets. For phase 1, G:F of pigs was lower (P &lt; 0.05) for LFB-E diet than LFW diet. For days 22–28, LFB-E diet had greater (P &lt; 0.01) ADFI than HFA diet and tended (P = 0.09) to have a greater ADG than HFB diet. In conclusion, hulled or hull-less barley grain replaced wheat grain without affecting growth performance in weaned pigs. Hulled barley increased feces consistency. Steam-explosion of hulled barley did not increase growth performance of weaned pigs. Barley grain is an attractive energy source for weaned pigs for managing growth and feces consistency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roel M. Maas ◽  
Yale Deng ◽  
Yueming Dersjant-Li ◽  
Jules Petit ◽  
Marc C. J. Verdegem ◽  
...  

AbstractSustainable aquafeed production requires fishmeal replacement, leading to an increasing use of plant-derived ingredients. As a consequence, higher levels of antinutritional substances, such as non-starch polysaccharides and phytate, are present in aquafeeds, with negative effects on fish performance, nutrient digestibility and overall gut health. To alleviate these negative effects, providing exogenous digestive enzymes and/or probiotics can be an effective solution. In this study, we tested the effect of dietary supplementation of enzymes (phytase and xylanase) and probiotics (three strains of Bacillus amyloliquefaciens) on nutrient digestion kinetics and volatile fatty acid content along the gut, and the distal gut microbiome diversity in Nile tilapia. Chyme volatile fatty content was increased with probiotic supplementation in the proximal gut, while lactate content, measured for the first time in vivo in fish, decreased with enzymes along the gut. Enzyme supplementation enhanced crude protein, Ca and P digestibility in proximal and middle gut. Enzymes and probiotics supplementation enhanced microbial interactions as shown by network analysis, while increased the abundance of lactic acid bacteria and Bacillus species. Such results suggest that supplementation with exogenous enzymes and probiotics increases nutrient availability, while at the same time benefits gut health and contributes to a more stable microbiome environment.


2002 ◽  
Vol 2002 ◽  
pp. 104-104
Author(s):  
J. A. N. Mills ◽  
E. Kebreab ◽  
L. A. Crompton ◽  
J. Dijkstra ◽  
J. France

The high contribution of postruminal starch digestion (>50%) to total tract starch digestion on certain energy dense diets (Mills et al. 1999) demands that limitations to small intestinal starch digestion are identified. Therefore, a dynamic mechanistic model of the small intestine was constructed and evaluated against published experimental data for abomasal carbohydrate infusions in the dairy cow. The mechanistic structure of the model allowed the current biological knowledge to be integrated into a system capable of identifying restrictions to dietary energy recovery from postruminal starch delivery.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 399
Author(s):  
Magdalena Krauze ◽  
Monika Cendrowska-Pinkosz ◽  
Paulius Matuseviĉius ◽  
Anna Stępniowska ◽  
Paweł Jurczak ◽  
...  

It was postulated that a phytobiotic preparation containing cinnamon oil and citric acid added to drinking water for chickens in a suitable amount and for a suitable time would beneficially modify the microbiota composition and morphology of the small intestine, thereby improving immunity and growth performance without inducing metabolic disorders. The aim of the study was to establish the dosage and time of administration of such a phytobiotic that would have the most beneficial effect on the intestinal histology and microbiota, production results, and immune and metabolic status of broiler chickens. The experiment was carried out on 980 one-day-old male chickens until the age of 42 days. The chickens were assigned to seven experimental groups of 140 birds each (seven replications of 20 individuals each). The control group (G-C) did not receive the phytobiotic. Groups CT-0.05, CT-0.1, and CT-0.25 received the phytobiotic in their drinking water in the amount of 0.05, 0.1, and 0.2 mL/L, respectively, at days 1–42 of life (continuous application, CT). The birds in groups PT-0.05, PT-0.5, and PT-0.25 received the phytobiotic in the same amounts, but only at days 1–7, 15–21, and 29–35 of life (periodic application, PT). Selected antioxidant and biochemical parameters were determined in the blood of the chickens, as well as parameters of immune status and redox status. The morphology of the intestinal epithelium, composition of the microbiome, and production parameters of chickens receiving the phytobiotic in their drinking water were determined as well. The addition of a phytobiotic containing cinnamon oil and citric acid to the drinking water of broiler chickens at a suitable dosage and for a suitable time can beneficially modify the microbiome composition and morphometry of the small intestine (total number of fungi p < 0.001, total number of aerobic bacteria p < 0.001; and total number of coliform bacteria p < 0.001 was decreased) improving the immunity and growth performance of the chickens (there occurred a villi lengthening p = 0.002 and crypts deepening p = 0.003). Among the three tested dosages (0.05, 0.1, and 0.25 mL/L of water) of the preparation containing cinnamon oil, the dosage of 0.25 mL/L of water administered for 42 days proved to be most beneficial. Chickens receiving the phytobiotic in the amount of 0.25 mL/L had better growth performance, which was linked to the beneficial effect of the preparation on the microbiome of the small intestine, metabolism (the HDL level p = 0.017 was increased; and a decreased level of total cholesterol (TC) p = 0.018 and nonesterified fatty acids (NEFA) p = 0.007, LDL p = 0.041, as well as triacylglycerols (TAG) p = 0.014), and immune (the level of lysozyme p = 0.041 was increased, as well as the percentage of phagocytic cells p = 0.034, phagocytosis index p = 0.038, and Ig-A level p = 0.031) and antioxidant system (the level of LOOH p < 0.001, MDA p = 0.002, and the activity of Catalase (CAT) p < 0.001 were decreased, but the level of ferric reducing ability of plasma (FRAP) p = 0.029, glutathione p = 0.045 and vitamin C p = 0.021 were increased).


2021 ◽  
Vol 12 (7) ◽  
pp. 2962-2971
Author(s):  
Yuheng Luo ◽  
Jun He ◽  
Hua Li ◽  
Cong Lan ◽  
Jingyi Cai ◽  
...  

This study was conducted to compare the effect of raw (WB) or mixed fungi-fermented wheat bran (FWB) on the growth, nutrient digestibility and intestinal health in weaned piglets.


1981 ◽  
Vol 45 (2) ◽  
pp. 283-294 ◽  
Author(s):  
Ann-Sofie Sandberg ◽  
H. Andersson ◽  
B. Hallgren ◽  
Kristina Hasselblad ◽  
B. Isaksson ◽  
...  

1. An experimental model for the determination of dietary fibre according to the definition of Trowell et al. (1976) is described. Food was subjected to in vivo digestion in ileostomy patients, and the ileostomy contents were collected quantitatively, the polysaccharide components of which were analysed by gas–liquid chromatography and the Klason lignin by gravimetric determination. The model was used for the determination of dietary fibre in AACC (American Association of Cereal Chemists), wheat bran and for studies on the extent of hydrolysis of wheat-bran fibre in the stomach and small intestine. The effect of wheat bran on ileostomy losses of nitrogen, starch and electrolytes was also investigated.2. Nine patients with established ileostomies were studied during two periods while on a constant low-fibre diet. In the second period 16 g AACC wheat bran/d was added to the diet. The ileostomy contents and duplicate portions of the diet were subjected to determinations of wet weight, dry weight, water content, fibre components, starch, N, sodium and potassium.3. The wet weight of ileostomy contents increased by 94 g/24 h and dry weight by 10 g/24 h after consumption of bran. The dietary fibre of AACC bran, determined as the increase in polysaccharides and lignin of ileostomy contents after consumption of bran, was 280 g/kg fresh weight (310 g/kg dry matter). Direct analysis of polysaccharides and lignin in bran gave a value of 306 g/kg fresh weight. Of the added bran hemicellulose and cellulose 80–100% and 75–100% respectively were recovered in ileostomy contents. There was no significant difference between the two periods in amount of N, starch and K found in the ileostomy contents. The Na excretion increased during the ‘bran’ period and correlated well with the wet weight of ileostomy contents.4. In conclusion, it seems probable that determination of dietary fibre by in vivo digestion in ileostomy patients comes very close to the theoretical definition of dietary fibre, as the influence of bacteria in the ileum seems small. Bacterial growth should be avoided by using a technique involving the change of ileostomy bags every 2 h and immediate deep-freezing of the ileostomy contents. True dietary fibre can be determined by direct analysis of polysaccharides and lignin in the food, at least in bran. Very little digestion of hemicellulose and cellulose from bran occurs in the stomach and small bowel. The 10–20% loss in some patients may be due to digestion by the gastric juice or to bacterial fermentation in the ileum, or both. The extra amount of faecal N after consumption of bran, reported by others, is probably produced in the large bowel.


Sign in / Sign up

Export Citation Format

Share Document