scholarly journals Carbon dioxide drawdown by Devonian lavas

Author(s):  
John Parnell ◽  
Kirsty Macleod ◽  
Malcolm J. Hole

ABSTRACTLower Devonian volcanic rocks in the northern British Isles, especially Scotland, show extensive evidence for contemporaneous subaerial weathering. Basalt and andesite lavas were altered to red iron oxides, commonly accompanied by calcite. Measurement of carbonate contents in 104 samples over a region of 100,000 km2 show an average of 13% calcite. Weighted for outcrop thickness, this represents an estimated 7.3×1016 moles CO2, extracted from surface waters and ultimately the atmosphere. The time frame for this drawdown is difficult to constrain, but complete weathering of a one-metre unit over 1000 years would involve CO2 consumption comparable with the highest rates determined in modern basaltic watersheds. These data demonstrate that volcanic activity can be a major sink, as well as a source for CO2, and provide a data set for modelling of CO2 flux during episodes of volcanic activity in the geological record. The high capacity of the Devonian lavas for CO2 drawdown emphasises the potential of basalts for CO2 sequestration.

2014 ◽  
Vol 7 (7) ◽  
pp. 2243-2262 ◽  
Author(s):  
C. E. Sioris ◽  
C. D. Boone ◽  
R. Nassar ◽  
K. J. Sutton ◽  
I. E. Gordon ◽  
...  

Abstract. An algorithm is developed to retrieve the vertical profile of carbon dioxide in the 5 to 25 km altitude range using mid-infrared solar occultation spectra from the main instrument of the ACE (Atmospheric Chemistry Experiment) mission, namely the Fourier transform spectrometer (FTS). The main challenge is to find an atmospheric phenomenon which can be used for accurate tangent height determination in the lower atmosphere, where the tangent heights (THs) calculated from geometric and timing information are not of sufficient accuracy. Error budgets for the retrieval of CO2 from ACE-FTS and the FTS on a potential follow-on mission named CASS (Chemical and Aerosol Sounding Satellite) are calculated and contrasted. Retrieved THs have typical biases of 60 m relative to those retrieved using the ACE version 3.x software after revisiting the temperature dependence of the N2 CIA (collision-induced absorption) laboratory measurements and accounting for sulfate aerosol extinction. After correcting for the known residual high bias of ACE version 3.x THs expected from CO2 spectroscopic/isotopic inconsistencies, the remaining bias for tangent heights determined with the N2 CIA is −20 m. CO2 in the 5–13 km range in the 2009–2011 time frame is validated against aircraft measurements from CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container), CONTRAIL (Comprehensive Observation Network for Trace gases by Airline), and HIPPO (HIAPER Pole-to-Pole Observations), yielding typical biases of −1.7 ppm in the 5–13 km range. The standard error of these biases in this vertical range is 0.4 ppm. The multi-year ACE-FTS data set is valuable in determining the seasonal variation of the latitudinal gradient which arises from the strong seasonal cycle in the Northern Hemisphere troposphere. The annual growth of CO2 in this time frame is determined to be 2.6 ± 0.4 ppm year−1, in agreement with the currently accepted global growth rate based on ground-based measurements.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1999
Author(s):  
Guanyong Sun ◽  
Bin Li ◽  
Hanjie Guo ◽  
Wensheng Yang ◽  
Shaoying Li ◽  
...  

Carbon included in coke and coal was used as a reduction agent and fuel in blast furnace (BF) ironmaking processes, which released large quantities of carbon dioxide (CO2). Minimizing the carbon consumption and CO2 output has always the goal of ironmaking research. In this paper, the reduction reactions of iron oxides by carbon, the gasification reaction of carbon by CO2, and the coupling reactions were studied by thermodynamic functions, which were derived from isobaric specific heat capacity. The reaction enthalpy at 298 K could not represent the heat value at the other reaction temperature, so the certain temperature should be confirmed by Gibbs frees energy and gas partial pressure. Based on Hess’ law, the energy consumption of the ironmaking process by carbon was calculated in detail. The decrease in the reduction temperature of solid metal iron has been beneficial in reducing the sensible heat required. When the volume ratio of CO to CO2 in the top gas of the furnace was given as 1.1–1.5, the coupling parameters of carbon gasification were 1.06–1.28 for Fe2O3, 0.71–0.85 for Fe3O4, 0.35–0.43 for FeO, respectively. With the increase in the coupling parameters, the volume fraction of CO2 decreased, and energy consumption and CO2 output increased. The minimum energy consumption and CO2 output of liquid iron production were in the reduction reactions with only CO2 generated, which were 9.952 GJ/t and 1265.854 kg/t from Fe2O3, 9.761 GJ/t and 1226.799 kg/t from Fe3O4, 9.007 GJ/t and 1107.368 kg/t from FeO, respectively. Compared with the current energy consumption of 11.65 GJ/t hot metal (HM) and CO2 output of 1650 kg/tHM of BF, the energy consumption and CO2 of ironmaking by carbon could reach lower levels by decreasing the coupled gasification reactions, lowering the temperature needed to generate solid Fe and adjusting the iron oxides to improve the iron content in the raw material. This article provides a simplified calculation method to understand the limit of energy consumption and CO2 output of ironmaking by carbon reduction iron oxides.


2016 ◽  
Vol 830 ◽  
pp. 134-138 ◽  
Author(s):  
Camila Senna Figueiredo ◽  
Jailton Ferreira do Nascimento ◽  
Rony Oliveira de Sant'ana ◽  
Deborah Cordeiro de Andrade ◽  
Zaniel Souto Dantas Procópio ◽  
...  

Monoethylene glycol (MEG) is being widely applied as thermodynamic inhibitor to avoid formation of natural gas hydrates. High hydrophilicity, low toxicity, low viscosity, low solubility in liquid hydrocarbons and high capacity of dissolving salts are advantageous for the use of MEG in the natural gas production. In addition, MEG recovery can be easily achieved considering its low volatility in relation to water, which makes the process economical and environmentally feasible. The reuse of MEG is being theme of research and phase equilibrium data for the involved species are required. In this work, a experimental procedure to synthetize iron carbonate and, afterwards, determine its solubility in aqueous mixtures of MEG in the presence of carbon dioxide atmosphere have been developed. Furthermore, a series of solubility data has been measured. This work presents a worthy contribution to the description of iron carbonate aqueous solubilities in the presence of MEG and carbon dioxide, regarding the instability of the salt to respect of oxidation. Subsequently, the knowledge of the behavior of the iron carbonate solubilities is useful for the industrial unities of production of natural gas and recovery of MEG.


2011 ◽  
Vol 47 (7) ◽  
pp. 2011-2013 ◽  
Author(s):  
Tamas Panda ◽  
Pradip Pachfule ◽  
Yifei Chen ◽  
Jianwen Jiang ◽  
Rahul Banerjee
Keyword(s):  

2012 ◽  
Vol 22 (17) ◽  
pp. 8431 ◽  
Author(s):  
Hasmukh A. Patel ◽  
Ferdi Karadas ◽  
Ali Canlier ◽  
Joonho Park ◽  
Erhan Deniz ◽  
...  

2016 ◽  
Vol 9 (6) ◽  
pp. 2445-2461 ◽  
Author(s):  
Akihiko Kuze ◽  
Hiroshi Suto ◽  
Kei Shiomi ◽  
Shuji Kawakami ◽  
Makoto Tanaka ◽  
...  

Abstract. A data set containing more than 6 years (February 2009 to present) of radiance spectra for carbon dioxide (CO2) and methane (CH4) observations has been acquired by the Greenhouse gases Observing SATellite (GOSAT, available at http://data.gosat.nies.go.jp/GosatUserInterfaceGateway/guig/GuigPage/open.do), nicknamed “Ibuki”, Thermal And Near infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS). This paper provides updates on the performance of the satellite and TANSO-FTS sensor and describes important changes to the data product, which has recently been made available to users. With these changes the typical accuracy of retrieved column-averaged dry air mole fractions of CO2 and CH4 (XCO2 and XCH4, respectively) are 2 ppm or 0.5 % and 13 ppb or 0.7 %, respectively. Three major anomalies of the satellite system affecting TANSO-FTS are reported: a failure of one of the two solar paddles in May 2014, a switch to the secondary pointing system in January 2015, and most recently a cryocooler shutdown and restart in August 2015. The Level 1A (L1A) (raw interferogram) and the Level 1B (L1B) (radiance spectra) of version V201 described here have long-term uniform quality and provide consistent retrieval accuracy even after the satellite system anomalies. In addition, we discuss the unique observation abilities of GOSAT made possible by an agile pointing mechanism, which allows for optimization of global sampling patterns.


2017 ◽  
Vol 48 (4) ◽  
pp. 537-553 ◽  
Author(s):  
A. Lowell ◽  
B. Suarez-Jimenez ◽  
L. Helpman ◽  
X. Zhu ◽  
A. Durosky ◽  
...  

BackgroundThe 11 September 2001 (9/11) attacks were unprecedented in magnitude and mental health impact. While a large body of research has emerged since the attacks, published reviews are few, and are limited by an emphasis on cross-sectional research, short time frame, and exclusion of treatment studies. Additionally, to date, there has been no systematic review of available longitudinal information as a unique data set. Consequently, knowledge regarding long-term trajectories of 9/11-related post-traumatic stress disorder (PTSD) among highly exposed populations, and whether available treatment approaches effectively address PTSD within the context of mass, man-made disaster, remains limited.MethodsThe present review aimed to address these gaps using a systematic review of peer-reviewed reports from October 2001 to May 2016. Eligible reports were of longitudinal studies of PTSD among highly exposed populations. We identified 20 reports of 9/11-related PTSD, including 13 longitudinal prevalence studies and seven treatment studies.ResultsFindings suggest a substantial burden of 9/11-related PTSD among those highly exposed to the attack, associated with a range of sociodemographic and back-ground factors, and characteristics of peri-event exposure. While most longitudinal studies show declining rates of prevalence of PTSD, studies of rescue/recovery workers have documented an increase over time. Treatment studies were few, and generally limited by methodological shortcomings, but support exposure-based therapies.ConclusionFuture directions for research, treatment, and healthcare policy are discussed.


Author(s):  
Shane Coogan ◽  
Xiang Gao ◽  
Aaron McClung ◽  
Wenting Sun

Existing kinetic mechanisms for natural gas combustion are not validated under supercritical oxy-fuel conditions because of the lack of experimental validation data. Our studies show that different mechanisms have different predictions under supercritical oxy-fuel conditions. Therefore, preliminary designers may experience difficulties when selecting a mechanism for a numerical model. This paper evaluates the performance of existing chemical kinetic mechanisms and produces a reduced mechanism for preliminary designers based on the results of the evaluation. Specifically, the mechanisms considered were GRI-Mech 3.0, USC-II, San Diego 204-10-04, NUIG-I, and NUIG-III. The set of mechanisms was modeled in Cantera and compared against the literature data closest to the application range. The high pressure data set included autoignition delay time in nitrogen and argon diluents up to 85 atm and laminar flame speed in helium diluent up to 60 atm. The high carbon dioxide data set included laminar flame speed with 70% carbon dioxide diluent and the carbon monoxide species profile in an isothermal reactor with up to 95% carbon dioxide diluent. All mechanisms performed adequately against at least one dataset. Among the evaluated mechanisms, USC-II has the best overall performance and is preferred over the other mechanisms for use in the preliminary design of supercritical oxy-combustors. This is a significant distinction; USC-II predicts slower kinetics than GRI-Mech 3.0 and San Diego 2014 at the combustor conditions expected in a recompression cycle. Finally, the global pathway selection method was used to reduce the USC-II model from 111 species, 784 reactions to a 27 species, 150 reactions mechanism. Performance of the reduced mechanism was verified against USC-II over the range relevant for high inlet temperature supercritical oxy-combustion.


Author(s):  
Todd D. Jack ◽  
Carl N. Ford ◽  
Shari-Beth Nadell ◽  
Vicki Crisp

A causal analysis of aviation accidents by engine type is presented. The analysis employs a top-down methodology that performs a detailed analysis of the causes and factors cited in accident reports to develop a “fingerprint” profile for each engine type. This is followed by an in-depth analysis of each fingerprint that produces a sequential breakdown. Analysis results of National Transportation Safety Board (NTSB) accidents, both fatal and non-fatal, that occurred during the time period of 1990–1998 are presented. Each data set is comprised of all accidents that involved aircraft with the following engine types: turbofan, turbojet, turboprop, and turboshaft (includes turbine helicopters). During this time frame there were 1461 accidents involving turbine powered aircraft; 306 of these involved propulsion malfunctions and/ or failures. Analyses are performed to investigate the sequential relationships between propulsion system malfunctions or failures with other causes and factors for each engine type. Other malfunctions or events prominent within each data set are also analyzed. Significant trends are identified. The results from this study can be used to identify areas for future research into intervention, prevention, and mitigation strategies.


Sign in / Sign up

Export Citation Format

Share Document