Spray solution pH and soybean injury as influenced by synthetic auxin formulation and spray additives

2020 ◽  
pp. 1-15
Author(s):  
Sarah Striegel ◽  
Maxwel C. Oliveira ◽  
Nicholas Arneson ◽  
Shawn P. Conley ◽  
David E. Stoltenberg ◽  
...  

Abstract Use of synthetic auxin herbicides has increased across the midwestern United States after adoption of synthetic auxin-resistant soybean traits, in addition to extensive use of these herbicides in corn. Off-target movement of synthetic auxin herbicides such as dicamba can lead to severe injury to sensitive plants nearby. Previous research has documented effects of glyphosate on spray-solution pH and volatility of several dicamba formulations, but our understanding of the relationships between glyphosate and dicamba formulations commonly used in corn and for 2,4-D remains limited. The objectives of this research were to (1) investigate the roles of synthetic auxin herbicide formulation, glyphosate, and spray additives on spray solution pH; (2) assess the impact of synthetic auxin herbicide rate on solution pH; and (3) assess the influence of glyphosate and application time of year on dicamba and 2,4-D volatility using soybean as bioindicators in low-tunnel field volatility experiments. Addition of glyphosate to a synthetic auxin herbicide decreased solution pH below 5.0 for four of the seven herbicides tested (range of initial pH of water source, 7.45–7.70). Solution pH of most treatments was lower at a higher application rate (4× the labeled POST rate) than the 1× rate. Among all treatment factors, inclusion of glyphosate was the most important affecting spray solution pH; however, the addition of glyphosate did not influence area under the injury over distance stairs (P = 0.366) in low-tunnel field volatility experiments. Greater soybean injury in field experiments was associated with high air temperatures (maximum, >29 C) and low wind speeds (mean, 0.3–1.5 m s−1) during the 48 h after treatment application. The two dicamba formulations (diglycolamine with VaporGrip® and sodium salts) resulted in similar levels of soybean injury for applications that occurred later in the growing season. Greater soybean injury was observed after dicamba than after 2,4-D treatments.

2018 ◽  
Vol 32 (5) ◽  
pp. 597-602 ◽  
Author(s):  
Marcelo Zimmer ◽  
Bryan G. Young ◽  
William G. Johnson

AbstractSynthetic auxin herbicides such as 2,4-D and dicamba are often utilized to control broadleaf weeds in preplant burndown applications to soybean. Halauxifen-methyl is a new synthetic auxin herbicide for broadleaf weed control in preplant burndown applications to corn, cotton, and soybean at low use rates (5 g ae ha–1). Field experiments were conducted to evaluate efficacy and weed control spectrum of halauxifen-methyl applied alone and in mixtures with 2,4-D (560 g ae ha–1), dicamba (280 g ae ha–1), and glyphosate (560 g ae ha–1). Glyphosate-resistant (GR) horseweed was controlled with halauxifen-methyl applied alone (90% control) and in mixtures (87% to 97% control) 35 d after treatment (DAT). Common ragweed was controlled 93% with halauxifen-methyl applied alone and 91% to 97% in mixtures 35 DAT. Halauxifen-methyl applied alone resulted in poor giant ragweed control 21 DAT (73% control); however, mixtures of halauxifen-methyl with 2,4-D, dicamba, or glyphosate controlled giant ragweed (86% to 98% control). Halauxifen-methyl alone resulted in poor redroot pigweed control (62% control) 21 DAT; however, mixtures of halauxifen-methyl with dicamba, 2,4-D, or glyphosate controlled redroot pigweed (89% to 98% control). Halauxifen-methyl controls GR horseweed and common ragweed applied alone and in mixtures with other synthetic auxin herbicides and glyphosate. Furthermore, mixing 2,4-D or dicamba with halauxifen-methyl can increase the weed control spectrum in preplant burndown applications.


1993 ◽  
Vol 73 (4) ◽  
pp. 1261-1273 ◽  
Author(s):  
Thomas M. Wolf ◽  
Raj Grover ◽  
Keith Wallace ◽  
Stan R. Shewchuk ◽  
John Maybank

Field trials were conducted to determine the effectiveness of shields in reducing off-target droplet drift from ground-rig sprayers. Sprayer booms ranging in width from 10 to 13.5 m and equipped with commercially available shields were operated along a 150-m swath in a field of approximately 20-cm-tall spring wheat in wind speeds ranging from 10 to 35 km h−1. Airborne drift was measured using aspirated air samplers. The use of an 80 flat fan tip (8001) at a pressure of 275 kPa and a ground speed of 8 km h−1 resulted in 7.5% of the 50 L ha−1 spray solution drifting off the target area. The use of protective cones with 8001 tips without lowering the boom reduced airborne drift by 33% at a 20 km h−1 wind speed, while a 65–85% drift reduction was accomplished with the combination of solid or perforated shielding and lowering the sprayer boom. Increasing the application rate to 100 L ha−1 by using 8002 tips reduced drift of the unshielded sprayer by 65%. Decreasing application rate to 15 L ha−1 by using 800017 tips increased drift by 29% despite the use of a shield. Off-target drift increased with increasing wind speeds for all sprayers, but the increase was less for shielded sprayers and coarser sprays. The decreased droplet size of spray from 110 tips increased drift when the boom height was the same as for 80 tips. High wind speeds, lower carrier volumes and finer sprays, 110 tips, and solid shields tended to decrease on-swath deposit uniformity, whereas a perforated shield or cones did not affect deposit uniformity. Key words: 2,4-D amine, droplet drift, aspirated air samplers, flat fan tips, deposition uniformity, droplet size


2021 ◽  
pp. 1-32
Author(s):  
Grant L Priess ◽  
Jason K Norsworthy ◽  
Rodger B Farr ◽  
Andy Mauromoustakos ◽  
Thomas R Butts ◽  
...  

Abstract In current and next-generation weed control technologies, sequential applications of contact and systemic herbicides for POST control of troublesome weeds are needed to mitigate the evolution of herbicide resistance. A clear understanding of the impact auxin herbicide symptomology has on Palmer amaranth groundcover will aid optimization of sequential herbicide applications. Field and greenhouse experiments were conducted in Fayetteville, AR and a laboratory experiment was conducted in Lonoke, AR, in 2020 to evaluate changes in Palmer amaranth groundcover following an application of 2,4-D and dicamba with various nozzles, droplet sizes, and velocities. Field experiments utilized three nozzles: Extended Range (XR), Air Induction Extended Range (AIXR), and Turbo TeeJet Induction (TTI), to assess the effect of spray droplet size on changes in Palmer amaranth groundcover. Nozzle did not affect Palmer amaranth groundcover when dicamba was applied. However, nozzle selection did impact groundcover when 2,4-D was applied; the following nozzle order XR>AIXR>TTI reduced Palmer amaranth groundcover the greatest in both site-years of the field experiment. This result (XR>AIXR> TTI) matches percent spray coverage data for 2,4-D and is inversely related to spray droplet size data. Rapid reductions of Palmer amaranth groundcover from 100% at time zero to 39.4 to 64.1% and 60.0 to 85.8% were observed 180 minutes after application in greenhouse and field experiments, respectively, regardless of herbicide or nozzle. In one site-year of the greenhouse and field experiments, regrowth of Palmer amaranth occurred 10080 minutes (14 days) after an application of either 2,4-D or dicamba to larger than labeled weeds. In all experiments, complete reduction of live Palmer amaranth tissue was not observed 21 days after application with any herbicide or nozzle combination. Control of Palmer amaranth escapes with reduced groundcover may potentially lead to increased selection pressure on sequentially applied herbicides due to a reduction in spray solution contact with the targeted pest.


2017 ◽  
Vol 31 (2) ◽  
pp. 165-177 ◽  
Author(s):  
Mandy D. Bish ◽  
Kevin W. Bradley

The introduction of soybean and cotton traits with resistance to synthetic auxin herbicides has led to an increase in concern over the off-target movement of dicamba and 2,4-D. A direct-mail survey was sent to Missouri pesticide applicators in January of 2016 to understand current herbicide application practices and applicator knowledge and awareness of the new synthetic auxin technologies. Completed surveys were returned by 2,335 applicators, representing approximately 11% of the state’s registered pesticide applicators. Survey data reported herein provides information regarding current pesticide applicator knowledge and practices and highlights areas that need more emphasis during applicator training. Overall, survey respondents were familiar with physical drift and methods to minimize that risk. However respondents were less familiar with volatility and temperature inversions, which can each influence off-target herbicide movement. Of the 427 commercial applicators and 1,535 noncommercial applicators who answered questions regarding volatility, 81% and 74% respectively, recognized that high temperatures can contribute to a herbicide’s ability to volatilize. However, only 48% and 39% understood that a herbicide’s vapor pressure influences volatility. Answers from the survey indicate further education is needed on the synthetic auxin technologies, such as what herbicides can be used with each technology, proper methods for inspecting and cleaning spray equipment, and the importance of reading herbicide labels. When asked whether applicators were aware of the new 2,4-D-resistant and dicamba-resistant traits, 76% of 443 commercial applicators and only 40% of 1,713 noncommercial applicators selected “yes.” Additionally, survey results suggests that current methods aimed to facilitate communication among producers and applicators, such as FieldWatch and Flag the Technology, may not be successfully adopted, at least in Missouri. Findings from this survey can be utilized to enhance training of pesticide applicators in preparation for the synthetic auxin herbicide technologies.


HortScience ◽  
2021 ◽  
pp. 1-8
Author(s):  
Michele R. Warmund ◽  
David H. Trinklein ◽  
Mark R. Ellersieck ◽  
Reid J. Smeda

The use of dicamba and 2,4-D products on herbicide-tolerant crops has resulted in numerous cases of off-target movement and injury to sensitive plants, including tomato (Solanum lycopersicon L.). Two greenhouse studies were conducted to determine whether ‘Big Beef’ (‘BB’) or ‘Florida 91’ (‘FL’) tomato plants pretreated with an antitranspirant, including Moisture-Loc (ML) at 100 mL·L−1, TransFilm (TF) at 50 g·L−1, or Wilt-Pruf (WP) at 100 mL·L−1, mitigated injury from synthetic auxin herbicides. Dicamba or 2,4-D was applied at a rate corresponding to 1/200 of the manufacturer’s labeled rate of 0.56 kg ae/ha or 1.06 kg ae/ha, respectively. At 2 weeks after treatment (WAT), plants treated with ML or WP before either herbicide exhibited injury symptoms, but they were always less severe than those treated with the herbicide alone for both cultivars. However, shoot length measurements indicated that none of the antitranspirants consistently provided protection against herbicide injury at 2 WAT. By 12 WAT, ML or WP used before either herbicide increased the number of live reproductive organs compared with dicamba or 2,4-D alone for both cultivars. Floral abortion on tomato plants was also reduced when ML or WP was applied before an herbicide treatment by 12 WAT. Although WP and ML did not provide complete protection against synthetic auxin herbicide injury, the concept of using film-forming barriers may be useful in mitigating some of the short-term effects of drift on plants.


2019 ◽  
Vol 33 (5) ◽  
pp. 680-685
Author(s):  
Marcelo Zimmer ◽  
Bryan G. Young ◽  
William G. Johnson

AbstractSynthetic-auxin herbicides are often applied for horseweed control before soybean planting. However, certain days of planting interval must be maintained before soybean planting, depending on the product and rate used, because of potential crop phytotoxicity. Halauxifen-methyl is a new synthetic-auxin herbicide for horseweed control in preplant applications in soybean. Field experiments were conducted in 2015 and 2016 in Indiana to evaluate soybean phytotoxicity in response to applications of halauxifen-methyl (5 g ae ha−1) at five preplant intervals (0, 1, 2, 3, and 4 weeks before planting [WBP]). In 2015, soybean phytotoxicity was not observed for any of the preplant intervals at any of the sites. In 2016, 0% to 15% phytotoxicity was observed at 14 d after planting (DAP) when halauxifen-methyl was applied at planting, 1 WBP, and 2 WBP at different sites. Soybean phytotoxicity was expressed in the unifoliate leaves only at 14 DAP. However, the first trifoliate did not show any injury symptoms at 21 DAP from any preplant application timing. Preplant application intervals for halauxifen-methyl did not affect soybean stand counts or grain yield in any site-year. Therefore, field results indicated that halauxifen-methyl applied alone can cause slight soybean phytotoxicity in preplant applications. In growth-chamber bioassays, reductions in soybean biomass, plant length, and emergence were accentuated at 30 C, compared with 20 or 15 C, when halauxifen-methyl was applied at 20 or 40 g ae ha−1. These results contradict the currently held paradigm in which lower temperatures generally increase crop phytotoxicity levels to herbicide soil residual.


2020 ◽  
pp. 1-7
Author(s):  
Travis R. Russell ◽  
Tim T. Lulis ◽  
Brian A. Aynardi ◽  
Kaiyuan T. Tang ◽  
John E. Kaminski

Abstract Buckhorn plantain populations purportedly resistant to 2,4-D were identified in Pennsylvania following long-term, continual applications of the active ingredient to turfgrass. The research objectives of this study were to 1) confirm 2,4-D resistance with dose-response experiments, 2) confirm field resistance of buckhorn plantain to 2,4-D in Pennsylvania, and 3) evaluate alternative herbicides for 2,4-D-resistant buckhorn plantain. Greenhouse dose-response experiments evaluated the sensitivity of buckhorn plantain biotypes that were resistant or susceptible to 2,4-D, and to halauxifen-methyl, two synthetic auxin herbicides from different chemical families. The resistant biotype was ≥11.3 times less sensitive to 2,4-D than the susceptible biotype and required a 2,4-D dosage ≥4.2 times greater than the standard application rate to reach 50% necrosis. No cross-resistance was observed to halauxifen-methyl because both resistant and susceptible populations demonstrated similar herbicide sensitivity. Field experiments confirmed previous reports of ineffectiveness (≤30% reduction) with 2,4-D and other phenoxycarboxylic herbicides in potentially resistant buckhorn plantain biotypes. Treatments containing halauxifen-methyl resulted in a ≥70% reduction in resistant biotypes. This is the first known report of synthetic auxin herbicide resistance in any weed species in Pennsylvania and highlights emerging herbicide resistance challenges in turfgrass systems.


2020 ◽  
Vol 36 ◽  
Author(s):  
Roberto Costa Avila Neto ◽  
Adriano Arrué Melo ◽  
André da Rosa Ulguim ◽  
Rafael Munhoz Pedroso ◽  
Geovana Facco Barbieri ◽  
...  

Synthetic auxin herbicides constitute major alternatives for managing tough-to-kill weeds such as Ipomoea spp. Adjuvant use is known to positively affect the biological efficacy of pesticides by modifying key spraying solution and droplet properties. Determining to what extent the use of adjuvants could change spray solution parameters and affect synthetic auxin herbicides’ efficiency for Ipomoea spp. control were the research goals. The study was conducted in two phases: laboratory and field, respectively. In the laboratory, the pH, the surface tension, and the resources of the herbicide drops were measured. In the field, weed control was evaluated. All adjuvants modified spray solution properties, lowering surface tension values. Most adjuvants decreased pH values as well as number and density of droplets due to an increase in droplet size. Regardless of adjuvant usage, Ipomoea spp. control levels rose more rapidly following 2,4-D spraying rather than dicamba, resulting in lower biomass accumulation when the former was used. Dicamba-containing treatments displayed slightly but significantly lower Ipomoea spp. control levels at the end of the evaluation period. Herbicide efficacy for Ipomoea spp. control was not improved upon the addition to the spray solution of any of the tested adjuvants. Adjuvant use altered spraying solution and droplet properties. 2,4-D spraying allowed for lower Ipomoea spp. biomass and greater control levels relative to dicamba, suggesting it might constitute a better option for Ipomoea spp. control. Even though herbicide efficacy was not improved with adjuvants, their use should still be considered given favorable spraying solution alterations, mainly with some alteration in droplet sizes despite the use of similar spray nozzles tips - maintaining weed control efficacy.


2019 ◽  
Vol 34 (2) ◽  
pp. 235-240 ◽  
Author(s):  
Joseph E. Hunter ◽  
Travis W. Gannon ◽  
Robert J. Richardson ◽  
Fred H. Yelverton ◽  
Ramon G. Leon

AbstractIn recent years, unmanned aerial vehicle (UAV) technology has expanded to include UAV sprayers capable of applying pesticides. Very little research has been conducted to optimize application parameters and measure the potential of off-target movement from UAV-based pesticide applications. Field experiments were conducted in Raleigh, NC during spring 2018 to characterize the effect of different application speeds and nozzle types on target area coverage and uniformity of UAV applications. The highest coverage was achieved with an application speed of 1 m s−1 and ranged from 30% to 60%, whereas applications at 7 m s−1 yielded 13% to 22% coverage. Coverage consistently decreased as application speed increased across all nozzles, with extended-range flat-spray nozzles declining at a faster rate than air-induction nozzles, likely due to higher drift. Experiments measuring the drift potential of UAV-applied pesticides using extended-range flat spray, air-induction flat-spray, turbo air–induction flat-spray, and hollow-cone nozzles under 0, 2, 4, 7, and 9 m s−1 perpendicular wind conditions in the immediate 1.75 m above the target were conducted in the absence of natural wind. Off-target movement was observed under all perpendicular wind conditions with all nozzles tested but was nondetectable beyond 5 m away from the target. Coverage from all nozzles exhibited a concave-shaped curve in response to the increasing perpendicular wind speed due to turbulence. The maximum target coverage in drift studies was observed when the perpendicular wind was 0 and 8.94 m s−1, but higher turbulence at the two highest perpendicular wind speeds (6.71 and 8.94 m s−1) increased coverage variability, whereas the lowest variability was observed at 2.24 m s−1 wind speed. Results suggested that air-induction flat-spray and turbo air–induction flat-spray nozzles and an application speed of 3 m s−1 provided an adequate coverage of target areas while minimizing off-target movement risk.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 754
Author(s):  
Jesaelen G. Moraes ◽  
Thomas R. Butts ◽  
Vitor M. Anunciato ◽  
Joe D. Luck ◽  
Wesley C. Hoffmann ◽  
...  

PPO-inhibiting herbicides in combination with glyphosate for postemergence applications is a common approach to manage glyphosate- and ALS-inhibitor-resistant weeds. PPO-inhibitors can reduce glyphosate translocation when applied in tank-mixtures, but adjuvants may be used to overcome this effect. Additionally, optimal droplet size may be affected by tank-mixtures of different herbicides and it can be crucial to herbicide efficacy. Field and greenhouse studies were conducted to investigate the impact of nozzle selection and adjuvants on weed control and interactions when applying PPO-inhibitors (fomesafen or lactofen) alone or in tank-mixture with glyphosate to five weed species using six nozzle types. Ultra-coarse droplets were just as effective as medium droplets regardless of the spray solution, but have a lower likelihood of off-target movement. Tank-mixtures applied were consistently antagonistic to common lambsquarters, horseweed, and Palmer amaranth. Only fomesafen was antagonistic to kochia whereas synergistic interactions were observed when glyphosate plus lactofen were applied in combination with COC, DRA + COC, or NIS. Separate applications are advisable with herbicide- and weed-specific situations to avoid antagonism, which is necessary to achieve optimum weed control and maintain the effectiveness of PPO-inhibitors. Future research should continue to look at these important interactions across a wide range of weed species.


Sign in / Sign up

Export Citation Format

Share Document