Imazamox Absorption, Translocation, and Metabolism by Cereal Rye (Secale cereale) at Low Temperatures

Weed Science ◽  
2019 ◽  
Vol 67 (2) ◽  
pp. 189-194 ◽  
Author(s):  
Michael H. Ostlie ◽  
Dale Shaner ◽  
Melissa Bridges ◽  
Phillip Westra

AbstractCereal rye (Secale cerealeL.) control in wheat (Triticum aestivumL.) can be difficult with existing selective herbicides. High phenotypic diversity within populations coupled with suboptimal herbicide application conditions leads to varying degrees of control with herbicide treatments. The following research focused on the consequence of low temperature on imazamox fate inS. cereale. A greenhouse study was conducted to determine the number of warm-temperature days required for imazamox to controlS. cereale. Absorption, translocation, and metabolism of imazamox was evaluated under warm (22/18C) and cold (4/4C) temperatures to identify changes to the fate of imazamox under different environmental conditions. In greenhouse conditions, more than 5 d of warm temperature following herbicide application was required to achieve 80%S. cerealemortality. Absorption of imazamox was reduced 20% whenS. cerealewas subjected to cold compared with warm temperatures. Only 10% of applied imazamox was moved from the treated leaf in continuous cool temperatures compared with greater than 60% in warm conditions. In cold conditions, imazamox content increased in all tested plant parts evaluated for the duration of the study, whereas in warm conditions, imazamox concentrations decreased in root and crown tissues after 3 d. Imazamox behavior was affected more by temperature thanS. cerealegrowth stage.Secale cerealemetabolism of imazamox was reduced, but not stopped in cold temperatures. After 6 d, only a 10% difference in intact imazamox remained between temperature treatments. In cold temperatures, reduced absorption and translocation, coupled with continued metabolism, allow plants to recover from an otherwise lethal imazamox treatment.

Weed Science ◽  
2010 ◽  
Vol 58 (2) ◽  
pp. 118-125 ◽  
Author(s):  
Jeffrey T. Hutchinson ◽  
Kenneth A. Langeland ◽  
Gregory E. MacDonald ◽  
Robert Querns

Old World climbing fern is one of the most invasive plants in natural areas of central and southern Florida. The fern spreads across the landscape by wind-blown spores and invades isolated and undisturbed habitats such as interior portions of the Florida Everglades. Land managers in Florida have reported that multiple herbicide treatments are required to control the fern, which could indicate that herbicides do not translocate throughout the plant in long-established populations. We conducted a greenhouse study to determine the absorption and translocation patterns in Old World climbing fern using the three herbicides most commonly used for management of this plant by land managers in Florida. Using14C-labeled herbicides, we evaluated absorption and translocation of glyphosate (2.25 kg ai ha−1), metsulfuron (0.10 kg ai ha−1), and triclopyr (1.68 kg ai ha−1) in Old World climbing fern using five different application scenarios (cut-and-spray, basal spray, 25% foliar spray, 50% foliar spray, and 100% foliar spray). Triclopyr was absorbed to the greatest extent (60.3%) of applied radioactive compounds compared to glyphosate (31.2%) and metsulfuron (19.8%). The majority of radioactivity remained in treated leaves for all herbicides with only small percentages of the absorbed radioactivity being detected in other plant parts. All three herbicides translocated acropetally and basipitally to some extent. Radioactivity, for the most part, translocated evenly throughout the plants but the greatest amount of radioactivity derived from triclopyr occurred in rhizomes when the cut-and-spray and basal applications were used. The radioactivity in rhizomes derived from glyphosate was greater in those treated using cut-and-spray. Based on autoradiographs, there was limited horizontal movement of any herbicide in the rhizomes of Old World climbing fern which could explain why resprouts are observed several weeks following treatment.


2006 ◽  
Vol 23 (1) ◽  
pp. 66-69 ◽  
Author(s):  
Adam H. Wiese ◽  
Daniel A. Netzer ◽  
Don E. Riemenschneider ◽  
Ronald S. Zalesny

Abstract We designed, constructed, and field-tested a versatile and unique weed compaction roller system that can be used with mechanical herbicide application for invasive weed control in tree plantations, agronomic settings, and areas where localized flora and fauna are in danger of elimination from the landscape. The weed compaction roller system combined with herbicide application generally had greater vegetation control compared with using only herbicide treatments or the unsprayed control. The roller system-herbicide treatment combination showed substantial total vegetation control two growing seasons after application without impacting diameter growth of the crop trees, which supports the need for less frequent entries into the field. The cost of the roller system was approximately $300.00.


2012 ◽  
Vol 30 (4) ◽  
pp. 861-870 ◽  
Author(s):  
N.M. Correia ◽  
F.J. Perussi ◽  
L.J.P. Gomes

The aim of this study was to assess the efficacy of S-metolachlor applied in pre-emergence conditions for the control of Brachiaria decumbens, Digitaria horizontalis, and Panicum maximum in sugar cane mechanically harvested without previous burning of the crop (green harvest) with the crop residue either left or not on the soil surface. The experiments were established in the field according to a randomized complete block design with four repetitions in a 7 x 2 split-plot scheme. In the plots, five herbicide treatments were studied (S-metolachlor at 1.44, 1.92, and 2.40 kg ha-1, clomazone at 1.20 kg ha-1, and isoxaflutole at 0.188 kg ha-1), and two control treatments with no herbicide application. In the subplots, the presence or absence of sugar cane crop residue on the soil surface was evaluated. S-metolachlor efficacy was not hampered by either 14 or 20 t ha-1 of sugar cane crop residue on the soil surface. When sugar cane crop residue was covering the soil surface, S-metolachlor at a rate of 1.44 kg ha-1 resulted in weed control similar at their larger rates, where as without the presence of crop residue, S-metolachlor controlled B. decumbens, D. horizontalis, and P. maximum at the rates of 1.92, 1.44, and 1.92 kg ha-1, respectively. The herbicides clomazone and isoxaflutole were effective for the studied species, independently of the crop residue covering the soil surface. S-metolachlor caused no visible injury symptoms to the sugar cane plant. Clomazone and isoxaflutole caused visible injuries to the sugar cane plant. None of the herbicides negatively affected the number of viable culms m² or the culm height and diameter.


Weed Science ◽  
1993 ◽  
Vol 41 (3) ◽  
pp. 335-340 ◽  
Author(s):  
Frank S. Rossi ◽  
Joseph M. Di Tomaso ◽  
Joseph C. Neal

Investigations of smooth crabgrass growth and fenoxaprop-ethyl retention, foliar penetration, translocation, and metabolism were conducted at various soil moisture levels using a polyethylene glycol (PEG) semipermeable membrane system. The activity of fenoxapropethyl was significantly reduced at higher levels of moisture stress and this antagonistic effect was greater with increased duration of water deficit following herbicide application. Fenoxaprop-ethyl spray retention decreased linearly (23% total reduction) as soil matric potential (Ψm) decreased from −0.01 to −0.1 MPa. Foliar penetration and translocation of14C-fenoxaprop-ethyl applied on the third true leaf were not affected by level or duration of moisture stress. Only 2% of the absorbed radioactivity was translocated out of the treated leaf for each moisture stress level and duration. As the soil Ψm decreased (−0.01 to −1.0 MPa) the relative levels of fenoxaprop-ethyl increased by 76 and 65% after a 48- and 96-h postapplication moisture stress period, respectively. In contrast, fenoxaprop acid decreased by 59 and 44% after 48 and 96 h of moisture stress, respectively. The relative level of fenoxaprop acid was linearly correlated to the antagonistic effect on shoot dry weight. These results suggest that decreased spray retention and, particularly, alterations in fenoxaprop-ethyl metabolism contribute to reduced fenoxaprop-ethyl activity observed in moisture-stressed smooth crabgrass.


2019 ◽  
Vol 34 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Derek M. Whalen ◽  
Lovreet S. Shergill ◽  
Lyle P. Kinne ◽  
Mandy D. Bish ◽  
Kevin W. Bradley

AbstractCover crops have increased in popularity in midwestern U.S. corn and soybean systems in recent years. However, little research has been conducted to evaluate how cover crops and residual herbicides are effectively integrated together for weed control in a soybean production system. Field studies were conducted in 2016 and 2017 to evaluate summer annual weed control and to determine the effect of cover crop biomass on residual herbicide reaching the soil. The herbicide treatments consisted of preplant (PP) applications of glyphosate plus 2,4-D with or without sulfentrazone plus chlorimuron at two different timings, 21 and 7 d prior to soybean planting (DPP). Cover crops evaluated included winter vetch, cereal rye, Italian ryegrass, oat, Austrian winter pea, winter wheat, and a winter vetch plus cereal rye mixture. Herbicide treatments were applied to tilled and nontilled soil without cover crop for comparison. The tillage treatment resulted in low weed biomass at all collection intervals after both application timings, which corresponded to tilled soil having the highest sulfentrazone concentration (171 ng g−1) compared with all cover crop treatments. When applied PP, herbicide treatments applied 21 DPP with sulfentrazone had greater weed (93%) and waterhemp (89%) control than when applied 7 DPP (60% and 69%, respectively). When applied POST, herbicide treatments with a residual herbicide resulted in greater weed and waterhemp control at 7 DPP (83% and 77%, respectively) than at 21 DPP (74% and 61%, respectively). Herbicide programs that included a residual herbicide had the highest soybean yields (≥3,403 kg ha−1). Results from this study indicate that residual herbicides can be effectively integrated either PP or POST in conjunction with cover crop termination applications, but termination timing and biomass accumulation will affect the amount of sulfentrazone reaching the soil.


Weed Science ◽  
1990 ◽  
Vol 38 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Malcolm D. Devine ◽  
Hank D. Bestman ◽  
William H. Vanden Born

Foliar-applied clopyralid was translocated much more readily than chlorsulfuron in the phloem of Tartary buckwheat plants. This result was not due to greater penetration of clopyralid into the treated leaf or to greater retention of chlorsulfuron in the cuticle. Experiments with excised leaf disks indicated that chlorsulfuron was taken up more readily by the leaf tissue and accumulated in the tissue to a higher concentration than clopyralid. Both herbicides effluxed readily from the tissue after transfer to herbicide-free medium, indicating that the accumulation was not due to irreversible binding within the tissue. Chlorsulfuron (2.8 nmol) applied with14C-sucrose reduced14C export from the treated leaf. Chlorsulfuron also reduced export of14C following exposure of the treated leaf to14CO2at 6, 12, or 24 h after herbicide application. This effect of chlorsulfuron could be partially reversed by pretreating the plants with a combination of 1 mM valine, leucine, and isoleucine. In similar experiments clopyralid had no effect on assimilate transport. It is concluded that phloem translocation of chlorsulfuron in sensitive species is limited by a rapid, indirect effect on phloem transport that reduces both its own translocation and that of assimilate.


Weed Science ◽  
1987 ◽  
Vol 35 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Daniel L. Devlin ◽  
David R. Gealy ◽  
Larry A. Morrow

Foliar and root absorption and translocation of metribuzin (4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one) by downy brome (Bromus tectorumL. # BROTE) and winter wheat (Triticum aestivumL.) was determined. After a 48-h absorption period, roots of three-week-old downy brome plants had absorbed two times more metribuzin on a total plant fresh weight basis than had roots of winter wheat. Root-absorbed metribuzin was translocated similarly regardless of species with 80% of absorbed14C accumulating in leaf blades, 10% in the leaf sheaths, and 10% in the roots. After 24 h, leaves of downy brome and winter wheat had absorbed, respectively, 26 and 36% of foliar-applied metribuzin, and absorption increased threefold with the addition of a nonionic surfactant. Translocation of foliar-absorbed metribuzin was primarily towards the apex of the treated leaf. No translocation from the treated leaf to other plant parts occurred with either species. The greater tolerance of winter wheat to metribuzin is due in part to less root absorption of metribuzin by winter wheat than by downy brome.


Weed Science ◽  
1977 ◽  
Vol 25 (5) ◽  
pp. 390-395 ◽  
Author(s):  
W.G. Steinert ◽  
J.F. Stritzke

Differences in the phytotoxicity of tebuthiuron (N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimehtylurea) to nine plant species were observed on the basis of calculated GR50values. Japanese brome (Bromus japonicusThunb.) with a GR50value of 0.016 ppmw was the most susceptible and corn (Zea maysL. ‘Gold Rush’) with a GR50value of 0.436 ppmw the least susceptible. There was some growth suppression with foliar application but primary activity on all species was attributed to root uptake. The most significant translocation of labeled tebuthiuron was to the tops of common ragweed (Ambrosia artemisiifoliaL.) plants treated through the nutrient solution where 24.5% of the total amount recovered was detected after 24 h. Only 7.3% of the total amount recovered was detected in the top of rye (Secale cerealeL. ‘Elbon’) plants with the same treatment. With both species, more than 90% of the radioactivity recovered following foliar treatments was still in the treated leaf after 24 h. Less than 5.5% of the recovered activity for both species was in the tops, less than 3% in the roots, and less than 1.5% was in the nutrient solution.


1986 ◽  
Vol 13 (2) ◽  
pp. 51-57 ◽  
Author(s):  
M. W. Farnham ◽  
H. D. Gross ◽  
J. J. Cappy

Abstract Diurnal variation in carbohydrate content of plant parts has been recognized for many years. Such variation in the peanut (Arachis hypogaea L.) plant has received little attention. In order to better understand the dynamics of carbohydrate accumulation and utilization in peanut, a greenhouse study was undertaken to examine the effects of shading on diurnal patterns of carbohydrate distribution in this crop. The cultivar, NC 4, was grown under unaltered greenhouse conditions (control) or under shade cloth (37% of photosynthetic photon flux of control). Plants were harvested 40 and 64 days after planting, at beginning bloom and full-pod. At each harvest date plants were sampled every three hours during a 24-h cycle. The concentrations of reducing and nonreducing sugars and starch were analyzed in leaf, stem, and root plus nodule tissues for all samples. Control plants accumulated about twice the dry matter, nodule mass, and fixed N2 as shaded. The carbohydrate concentration was greater in tissues of controls than in those of shaded plants. Growth stage affected both carbohydrate concentration in tissues and the diurnal variation within tissues. All plants harvested at the bloom stage showed significant but individual diurnal effects on concentrations of reducing and nonreducing sugars and starch in leaves, and significant and comparable patterns of nonreducing sugars and starch in roots. Plants harvested at the pod stage exhibited few significant diurnal effects; there was substantial plant-to-plant variability at this stage. Results from this study emphasize the importance of considering the time of day and developmental stage when analyzing nonstructural carbohydrates in peanut tissues.


2016 ◽  
Vol 9 (3) ◽  
pp. 379-388 ◽  
Author(s):  
N. De Clercq ◽  
G. Vlaemynck ◽  
E. Van Pamel ◽  
D. Colman ◽  
M. Heyndrickx ◽  
...  

Penicillium expansum is the principal cause of blue mould rot and associated production of patulin, a weak mycotoxin, in apples worldwide. P. expansum growth and patulin production is observed during improper or long-term storage of apples. We have investigated the extent to which each successive step during long-term storage contributes to patulin production in various P. expansum isolates. Fungal isolates collected on apples from several Belgian orchards/industries were identified to species level. Random amplification of polymorphic DNA (RAPD) analysis and β-tubulin gene sequencing identified P. expansum and Penicillium solitum as the most prevalent Penicillium species associated with Belgian apples. All 27 P. expansum isolates and eight reference strains were characterised for their patulin production capacity on apple puree agar medium for five days under classical constant temperature and atmosphere conditions. Under these conditions, a large range of patulin production levels was observed. Based on this phenotypic diversity, five P. expansum isolates and one reference strain were selected for in vitro investigation of patulin production under representative conditions in each step of long-term apple storage. Patulin accumulation seemed highly strain dependent and no significant differences between the storage steps were observed. The results also indicated that a high spore inoculum may lead to a strong patulin accumulation even at cold temperatures (1 °C) combined with controlled atmosphere (CA) (3% O2, 1% CO2), suggesting that future control strategies may benefit from considering the duration of storage under CA conditions as well as duration of deck storage.


Sign in / Sign up

Export Citation Format

Share Document