Evaluation of the Adhesion Properties of Inorganic Materials with High Surface Energies

Langmuir ◽  
2004 ◽  
Vol 20 (23) ◽  
pp. 10174-10178 ◽  
Author(s):  
Jeong Ho Cho ◽  
Dae Ho Lee ◽  
Jung Ah Lim ◽  
Kilwon Cho ◽  
Jung Ho Je ◽  
...  
2015 ◽  
Vol 6 (28) ◽  
pp. 5086-5092 ◽  
Author(s):  
Dandan Zhu ◽  
Qiang Ye ◽  
Xuemin Lu ◽  
Qinghua Lu

Copolymers with a PEG oligomer side chain present high surface energies and adhesion properties; they also can quickly self-heal the crack interfaces spontaneously at ambient temperature.


2010 ◽  
Vol 133 (2) ◽  
Author(s):  
Donghyun Shin ◽  
Debjyoti Banerjee

Silica nanoparticles (1% by weight) were dispersed in a eutectic of lithium carbonate and potassium carbonate (62:38 ratio) to obtain high temperature nanofluids. A differential scanning calorimeter instrument was used to measure the specific heat of the neat molten salt eutectic and after addition of nanoparticles. The specific heat of the nanofluid was enhanced by 19–24%. The measurement uncertainty for the specific heat values in the experiments is estimated to be in the range of 1–5%. These experimental data contradict earlier experimental results reported in the literature. (Notably, the stability of the nanofluid samples was not verified in these studies.) In the present study, the dispersion and stability of the nanoparticles were confirmed by using scanning electron microscopy (SEM). Percolation networks were observed in the SEM image of the nanofluid. Furthermore, no agglomeration of the nanoparticles was observed, as confirmed by transmission electron microscopy. The observed enhancements are suggested to be due to the high specific surface energies that are associated with the high surface area of the nanoparticles per unit volume (or per unit mass).


2021 ◽  
Author(s):  
Anouk L'Hermitte ◽  
Daniel M. Dawson ◽  
Pilar Ferrer ◽  
Kanak Roy ◽  
Georg Held ◽  
...  

In the past decade, porous boron nitride (BN) has proven promising as a novel class of inorganic materials in the field of separations and particularly adsorption. Owing to its high surface area and thermal stability, porous BN has been researched for CO2 capture and water cleaning, for instance. However, most research remains at laboratory scale due to a lack of understanding of the formation mechanism of porous BN, which is still largely a ‘black box’ and prevents scale-up. Partial reaction pathways have been unveiled, but they omit critical steps in the formation, including the porosity development, which is key to adsorption. To unlock the potential of porous BN at a larger scale, we have investigated its formation from the perspective of both chemical formation and porosity development. We have characterised reaction intermediates obtained at different temperatures with a range of analytical and spectroscopic tools. Using these analyses, we propose a mechanism that highlights the key stages of BN formation and its porosity, including the intermediates and gaseous species formed in the process. We identified that the formation of non-porous carbon nitride is crucial to form porous BN with release of porogens, such as HCN and CO2. This work paves the way for scaled-up processes to use porous BN to its full potential at industrial level for gas and liquid separations.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1736 ◽  
Author(s):  
Xiaoping Ji ◽  
Jia Li ◽  
Xugang Zhai ◽  
Haiwei Zou ◽  
Bo Chen

The surface energy and bonding coefficient of asphalt are important factors that affect the adhesion performance of asphalt/aggregate. In this study, the micro-bee-like-structure of asphalt and force curves between the microscope-probe and asphalt were measured via atomic force microscopy (AFM). To investigate the influence of asphalt properties on micro-adhesion of asphalt, five types of asphalt were used in four states: original, aged at 163 °C, immersed in water and added anti-stripping agent. The results demonstrate that the surface energy of grade 90 asphalt is greater than that of grade 70 asphalt when oil source is the same and that of modified asphalt is greater than matrix asphalt. The surface energies and bonding coefficients of asphalts decreased after aging and immersion. The surface energies of asphalts were greatly improved by adding anti-stripping agent and the bonding coefficients of the asphalts increased by 5.04–37.14% after adding an anti-stripping agent.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 413 ◽  
Author(s):  
Robert Müller ◽  
Lilit Ghazaryan ◽  
Paul Schenk ◽  
Sabrina Wolleb ◽  
Vivek Beladiya ◽  
...  

High-density ruthenium (Ru) thin films were deposited using Ru(EtCp)2 (bis(ethylcyclopentadienyl)ruthenium) and oxygen by thermal atomic layer deposition (ALD) and compared to magnetron sputtered (MS) Ru coatings. The ALD Ru film growth and surface roughness show a significant temperature dependence. At temperatures below 200 °C, no deposition was observed on silicon and fused silica substrates. With increasing deposition temperature, the nucleation of Ru starts and leads eventually to fully closed, polycrystalline coatings. The formation of blisters starts at temperatures above 275 °C because of poor adhesion properties, which results in a high surface roughness. The optimum deposition temperature is 250 °C in our tool and leads to rather smooth film surfaces, with roughness values of approximately 3 nm. The ALD Ru thin films have similar morphology compared with MS coatings, e.g., hexagonal polycrystalline structure and high density. Discrepancies of the optical properties can be explained by the higher roughness of ALD films compared to MS coatings. To use ALD Ru for optical applications at short wavelengths (λ = 2–50 nm), further improvement of their film quality is required.


2012 ◽  
Vol 66 (5) ◽  
Author(s):  
Nahla Zanina ◽  
Soumaya Haddad ◽  
Ali Othmane ◽  
Thierry Jouenne ◽  
David Vaudry ◽  
...  

AbstractThe seeding of endothelial cells on biomaterial surfaces has become a major challenge to achieve better haemocompatibility of these surfaces. Multilayers of polyelectrolytes formed by the layerby-layer method are promising in this respect. In this study, the interactions of endothelial cells with multilayered polyelectrolytes films were investigated. The build-ups were prepared by selfassembled alternatively adsorbed polyanions and polycations functionalised with fibronectin and collagen. Anionic poly(sodium 4-styrenesulfonate) and cationic poly(allylamine hydrochloride) polyelectrolytes were chosen as a model system. Elaborated surfaces were characterised by electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode showed good reversible electrochemical properties and high stability in an electrolyte solution. The film ohmic resistance was highest when the film was coated with fibronectin; the parameters so determined were correlated with atomic force microscopy images. Cell colorimetric assay (WST-1) and immunofluorescence were used to quantify the cell viability and evaluate the adhesion properties. When cultured on a surface where proteins were deposited, cells adhered and proliferated better with fibronectin than with collagen. In addition, a high surface free energy was favourable to adhesion and proliferation (48.8 mJ m−2 for fibronectin and 39.7 mJ m−2 for collagen, respectively). Endothelial cells seeded on functionalised-polyelectrolyte multilayer films showed a good morphology and adhesion necessary for the development of a new endothelium.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2896 ◽  
Author(s):  
Natalia Manousi ◽  
George Zachariadis ◽  
Eleni Deliyanni ◽  
Victoria Samanidou

Food samples such as milk, beverages, meat and chicken products, fish, etc. are complex and demanding matrices. Various novel materials such as molecular imprinted polymers (MIPs), carbon-based nanomaterials carbon nanotubes, graphene oxide and metal-organic frameworks (MOFs) have been recently introduced in sample preparation to improve clean up as well as to achieve better recoveries, all complying with green analytical chemistry demands. Metal-organic frameworks are hybrid organic inorganic materials, which have been used for gas storage, separation, catalysis and drug delivery. The last few years MOFs have been used for sample preparation of pharmaceutical, environmental samples and food matrices. Due to their high surface area MOFs can be used as adsorbents for the development of sample preparation techniques of food matrices prior to their analysis with chromatographic and spectrometric techniques with great performance characteristics.


2021 ◽  
Vol 9 (11) ◽  
pp. 2336
Author(s):  
Arum Darmastuti ◽  
Pratama N. Hasan ◽  
Rachma Wikandari ◽  
Tyas Utami ◽  
Endang S. Rahayu ◽  
...  

Adhesion capacity is considered one of the selection criteria for probiotic strains. The purpose of this study was to determine the adhesion properties of two candidate probiotics, Lactobacillus plantarum Dad-13 and Lactobacillus plantarum Mut-7. The evaluation included the hydrophobicity of the cell surface using microbial adhesion to hydrocarbons (MATH), autoaggregation, and the adhesion of L. plantarum Dad-13 and L. plantarum Mut-7 to the intestinal mucosa of Sprague Dawley rat, followed by genomic analysis of the two L. plantarum strains. L. plantarum Dad-13 and L. plantarum Mut-7 showed a high surface hydrophobicity (78.9% and 83.5%) and medium autoaggregation ability (40.9% and 57.5%, respectively). The exposure of both isolates to the surface of the rat intestine increased the total number of lactic acid bacteria on the colon compartment, from 2.9 log CFU/cm2 to 4.4 log CFU/cm2 in L. plantarum Dad-13 treatment and to 3.86 log CFU/cm2 in L. plantarum Mut-7 treatment. The results indicate the ability of two L. plantarum to attach to the surface of the rat intestine. The number of indigenous E. coli in the colon also decreased when the compartment was exposed to L. plantarum Dad-13 and Mut-7, from 2.9 log CFU/cm2 to 1 log CFU/cm2. Genomic analysis revealed that both strains have genes related to adhesion properties that could play an important role in increasing the adherence of probiotics to the intestinal mucosa such as gene encoding fibronectin-binding protein, chaperonin heat shock protein 33 (Hsp33), and genes related to the capsule and cell wall biosynthesis. Based on these findings, we believe that L. plantarum Dad-13 and L. plantarum Mut-7 have adhesion properties to the intestinal mucosa in the rat intestine model system. The present research will be essential to elucidate the molecular mechanism associated with adhesion in our two probiotic strains.


Author(s):  
Virendra Kumar Yadav ◽  
Nisha Choudhary ◽  
Samreen Heena Khan ◽  
Parth Malik ◽  
Gajendra Kumar Inwati ◽  
...  

Nanotechnology is one of the most reliable techniques for the remediation of heavy metals. As nanoparticles have a higher surface area to volume, ratio, and high surface energies, so nano-based absorbents are very efficient. Adsorption technique is the most preferred for the remediation of wastewater pollutants. In the current study, a comparative study was done between bio sorbents, nanosorbents and bio nanosorbents. The chapter studies with the synthesis and characterization of the bio sorbents, bionanosorbents, their mechanism of sorption, their synthesis, in addition, application for the remediation of heavy metals from wastewater. The fly ash is an industrial byproduct. Biosorbents have immense applications in the field of bioremediation of heavy metals. Further, their components have also enhanced removal efficiency from the wastewater.


Sign in / Sign up

Export Citation Format

Share Document