Bioactive Proteins and Peptides in Foods

2011 ◽  
Vol 81 (23) ◽  
pp. 181-192 ◽  
Author(s):  
Barbara Walther ◽  
Robert Sieber

Increasing amounts of data demonstrate a bioactive role of proteins and peptides above and beyond their nutritional impact. The focus of the investigations has mainly been on vitamin- and mineral-binding proteins, on antimicrobial, immunosuppressing/-modulatory proteins, and on proteins with enzyme inhibitory activity as well as on hormones and growth factors from different food proteins; most research has been performed on milk proteins. Because of their molecular size, intact absorption of proteins in the human gastrointestinal tract is limited. Therefore, most of the proteins with biological functions show physiological activity in the gastrointestinal tract by enhancing nutrient absorption, inhibiting enzymes, and modulating the immune system to defend against pathogens. Peptides are released during fermentation or digestion from food proteins by proteolytic enzymes; such peptides have been found mainly in milk. Some of these released peptides exert biological activities such as opiate-like, antihypertensive, mineral-binding, antioxidative, antimicrobial, immuno-, and cytomodulating activity. Intact absorption of these smaller peptides is more likely than that of the larger proteins. Consequently, other organs than the gastrointestinal tract are possible targets for their biological functions. Bioactive proteins as well as bioactive peptides are part of a balanced diet. It is possible to accumulate bioactive peptides in food, for example by using specific microorganisms in fermented dairy products. Although bioactive peptides have been the subject of several studies in vitro and in vivo, their health potential is still under investigation. Up to now, the Commission of European Communities has not (yet) authorized any health claims for bioactive proteins and peptides from food.

2012 ◽  
Vol 108 (S2) ◽  
pp. S149-S157 ◽  
Author(s):  
Kay J. Rutherfurd-Markwick

In addition to supplying essential nutrients, some food proteins can confer additional health benefits beyond nutrition. The presence of bioactive proteins and peptides in different foods is a factor not currently taken into consideration when assessing the dietary quality of food proteins. The range of described physiological benefits attributed to bioactive proteins and peptides is diverse. Multiple factors can potentially impact on the ability of a bioactive peptide or protein to elicit an effect. Although some food proteins act directly in their intact form to elicit their effects, generally it is peptides derived from digestion, hydrolysis or fermentation that are of most interest. The levels of bioactive peptides generated must be sufficient to elicit a response, but should not be so high as to be unsafe, thus causing negative effects. In addition, some peptides cause systemic effects and therefore must be absorbed, again in sufficient amounts to elicit their action. Many studies to date have been carried outin vitro; therefore it is important that further trials are conductedin vivoto assess efficacy, dose response and safety of the peptides, particularly if health related claims are to be made. Therefore, methods must be developed and standardised that enable the measurement of health benefits and also the level of bioactive peptides which are absorbed into the bloodstream. Once standardised, such methods may provide a new perspective and an additional mechanism for analysing protein quality which is currently not encompassed by the use of the protein digestibility-corrected amino acid score (PDCAAS).


2018 ◽  
Vol 88 (5-6) ◽  
pp. 319-343 ◽  
Author(s):  
Elham Nourmohammadi ◽  
Alireza Sadeghi Mahoonak

Abstract. Today, due to immobility, improper food habits, and changes in lifestyle, communities are faced with an increase in health problems such as blood pressure, cholesterol, diabetes, and thrombosis. Bioactive peptides are considered as being the main products of protein hydrolysis which exert high effects on the nervous, immune, and gastrointestinal systems. Unlike synthetic drugs, bioactive peptides have no side effects and this advantage has qualified them as an alternative to such drugs. Due to the above-mentioned properties, this paper focuses on the study of health-improving attributes of bioactive peptides such as anti-oxidative, anti-hypertensive, immunomodulatory, anti-microbial, anti-allergenic, opioid, anti-thrombotic, mineral-binding, anti-inflammatory, hypocholesterolemic, and anti-cancer effects. We also discuss the formation of bioactive peptides during fermentation, the main restrictions on the use of bioactive peptides and their applications in the field of functional foods. In general, food-derived biologically active peptides play an important role in human health and may be used in the development of novel foods with certain health claims.


2015 ◽  
Vol 34 (4) ◽  
Author(s):  
Prasad Patil ◽  
Akanksha Wadehra ◽  
Varsha Garg ◽  
Kanchan Munjal ◽  
Sudhir Kumar Tomar ◽  
...  

Milk has long been acknowledged as a source of macro- and micro nutrients. Presently, several identified biologically active substances from milk and their derivatives has attracted much attention from the scientific community. These bioactive compounds confer many health benefits that might support disease prevention. Worldwide, there is an increasing interest in the therapeutic potential of bioactive peptides which collectively present a cornucopia of bioactivities for utilization in humans. Bioactive peptides are hydrolysates with specific amino acid sequences that exert a positive physiological effect on the body. Most of the biological activities are encrypted within the primary sequence of the native protein and can be released during digestion by proteolytic enzymes in the gastrointestinal tract or during fermentation and food processing. Milk protein is an important source of bioactive peptides which may contribute to regulate the nervous, gastrointestinal, and cardiovascular systems as well as the immune system. Milk protein derived bioactive peptides are shown to have antihypertensive, antimicrobial, immunomodulatory, antioxidative and mineral-binding properties. Bioactive peptides derived from milk proteins are of particular interest to the food industry due to the potential functional and physiological roles that they exhibit.


2007 ◽  
Vol 13 (6) ◽  
pp. 393-404 ◽  
Author(s):  
M. Dziuba ◽  
M. Darewicz

The Bioactive Peptides (BIOPEP) database developed at the Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn was used to determine the profiles of the potential biological activity of food proteins and to classify them into families. Proteins whose amino acid sequences contained fragments with a specified activity and which were a potential source of this activity were divided into families. Among the 44 biological activities of peptides included in the BIOPEP database, 23 were selected for analysis. The number of families was diversified. The largest families were composed of proteins — precursors of antihypertensive peptides and dipeptidyl aminopeptidase IV inhibitors as well as those activating ubiquitin-mediated proteolysis and opioid ones. Only a few proteins included in the database contained in their sequences fragments with the following activities: chemotactic, binding and transporting metals and metal ions, stimulating red blood cells synthesis, inducing contractions of smooth muscles, and hemolytic. Highly numerous families were divided into five sub-families according to the value of the frequency of occurrence of fragments exhibiting given activity (A parameter).


Author(s):  
Selda Bulca ◽  
Burcu Güvenç

In recent years, apart from the nutritional values of foods, functional properties have also gained importance. Bioactive peptides are the fragmentation products of proteins that have a positive effect on human health. Bioactive peptides in cow's milk are released as a result of hydrolysis of milk proteins with proteolytic enzymes. Bioactive peptides have biochemical and physiological properties such as immune regulation, mineral binding, antimicrobial, antihypertensive, opioid, anti-oxidative, anti-ulcerative, antithrombotic, antitumor and apoptosis. In this review, bioactive peptides in milk and milk products and their antimicrobial properties and effects on human health were evaluated.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Harmen H. J. de Jongh ◽  
Carlos López Robles ◽  
Eefjan Timmerman ◽  
Julie A. Nordlee ◽  
Poi-Wah Lee ◽  
...  

Food-processing conditions may alter the allergenicity of food proteins by different means. In this study, the effect of the glycosylation as a result of thermal treatment on the digestibility and IgE-binding of codfish parvalbumin is investigated. Native and glycosylated parvalbumins were digested with pepsin at various conditions relevant for the gastrointestinal tract. Intact proteins and peptides were analysed for apparent molecular weight and IgE-binding. Glycosylation did not substantially affect the digestion. Although the peptides resulting from digestion were relatively large (3 and 4 kDa), the IgE-binding was strongly diminished. However, the glycosylated parvalbumin had a strong propensity to form dimers and tetramers, and these multimers bound IgE intensely, suggesting stronger IgE-binding than monomeric parvalbumin. We conclude that glycosylation of codfish parvalbumin does not affect the digestibility of parvalbumin and that the peptides resulting from this digestion show low IgE-binding, regardless of glycosylation. Glycosylation of parvalbumin leads to the formation of higher order structures that are more potent IgE binders than native, monomeric parvalbumin. Therefore, food-processing conditions applied to fish allergen can potentially lead to increased allergenicity, even while the protein’s digestibility is not affected by such processing.


2021 ◽  
Vol 11 (2) ◽  
pp. 811
Author(s):  
Federica Ianni ◽  
Alessandra Anna Altomare ◽  
Beniamino T. Cenci-Goga ◽  
Francesca Blasi ◽  
Luca Grispoldi ◽  
...  

Among various food sources, milk proteins remain the major vector for functional peptides endowed with several biological activities. Particularly, the proteolytic activity of lactic acid bacteria during milk fermentation has been one of the most followed strategies to produce bioactive peptides. In the present study, the exploration of the activity of several starter cultures, at different fermentation times, was firstly investigated by reversed phase-high performance liquid chromatography. Among the tested strains, Lactobacillus helveticus showed a higher proteolytic activity and it was submitted to further investigations by changing the fermentation substrate (skim milk, brain heart infusion, peptone water) as well as the extraction strategy (trichloroacetic acid vs. glass beads). The chromatographic analyses and the in vitro antioxidant and antihypertensive assays highlighted considerable differences for L. helveticus hydrolysates from different substrates, while a negligible impact by the two extraction protocols emerged. Furthermore, nano-high pressure liquid chromatography coupled with a high resolution mass spectrometry analyzer allowed the preliminary discrimination of fractions from fermented skim milk, likely responsible for the found activity. The obtained results suggest the possibility of varying the fermentation parameters in order to maximize the functional effects of the bioactive peptides.


2021 ◽  
Vol 14 (5) ◽  
pp. 467
Author(s):  
Ana Henriques Mota ◽  
Inês Prazeres ◽  
Henrique Mestre ◽  
Andreia Bento-Silva ◽  
Maria João Rodrigues ◽  
...  

Sambucus nigra L. (S. nigra) is a shrub widespread in Europe and western Asia, traditionally used in medicine, that has become popular in recent years as a potential source of a wide range of interesting bioactive compounds. The aim of the present work was to develop a topical S. nigra extract formulation based on ethosomes and thus to support its health claims with scientific evidence. S. nigra extract was prepared by an ultrasound-assisted method and then included in ethosomes. The ethosomes were analyzed in terms of their size, stability over time, morphology, entrapment capacity (EC), extract release profile, stability over time and several biological activities. The prepared ethosomes were indicated to be well defined, presenting sizes around 600 nm. The extract entrapment capacity in ethosomes was 73.9 ± 24.8%, with an interesting slow extract release profile over 24 h. The extract-loaded ethosomes presented collagenase inhibition activity and a very good skin compatibility after human application. This study demonstrates the potential use of S. nigra extract incorporated in ethosomes as a potential cosmeceutical ingredient and on further studies should be performed to better understand the impact of S. nigra compounds on skin care over the time.


Sign in / Sign up

Export Citation Format

Share Document