Instant White Rice with Pigmented Giant Embryonic Rice Improves Glucose Metabolism and Inhibits Oxidative Stress in High-Fat Diet-Fed Mice

2018 ◽  
Vol 88 (5-6) ◽  
pp. 234-243
Author(s):  
Soo Im Chung ◽  
Catherine W. Rico ◽  
Sang Chul Lee ◽  
Mi Young Kang

Abstract. The effects of instant cooked rice made from a combination of white rice and pigmented giant embryonic Keunnunjami rice, in comparison with those of instant regular white or brown rice and instant non-pigmented giant embryonic brown rice, on the glucose metabolism and antioxidant defense status in high-fat diet-fed mice were investigated. 56 male C57BL/6N mice were randomly divided into 7 dietary groups: normal control, high fat (23 %, HF), and HF supplemented with normal white (HF + NW) or brown rice (HF + NB), non-pigmented giant embryonic rice (HF + GB), and white rice with 8 % Keunnunjami (HF + KJ8) and 18 % Keunnunjami (HF + KJ18). After 7 weeks, HF mice showed marked increases in blood glucose (156 mg/dL), plasma insulin (12.1 mg/mL), and lipid peroxidation, and a significant decrease in hepatic glycogen (14.2 mg/g) relative to the control group (p < 0.05). However, addition of instant NB, GB, KJ8, andKJ18) rice suppressed this high-fat diet-induced hyperglycemia and oxidative stress through altering glucose-regulating enzymes (glucokinase, glucose-6-phosphatase, and phosphoenolpyruvate carboxykinase) and activation of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase, glutathione reductase, and paraoxonase). Compared with HF mice, HF + KJ8 and HF + KJ18 groups exhibited significantly lower glucose (139–141 mg/dL), insulin (10.6–10.9 mg/mL), and lipid peroxidation and higher glycogen (15.3–16.4 mg/g) (p < 0.05). The hypoglycemic and antioxidant effects of instant KJ8 and KJ18 rice were generally comparable to those of instant NB and GB rice. These findings illustrate that instant rice made from white rice with 8 % Keunnunjami rice may be useful as a functional food with therapeutic potential against hyperglycemia and oxidative damage.

2009 ◽  
Vol 79 (4) ◽  
pp. 255-263 ◽  
Author(s):  
XiuHua Shen ◽  
QingYa Tang ◽  
Jiang Wu ◽  
Yi Feng ◽  
Juan Huang ◽  
...  

Objective: To evaluate the effect of vitamin E on the level of oxidative stress in diet-induced obese Sprague-Dawley rats. Methods: Thirty weaning male rats were placed into three groups with 10 animals each: a control group with normal chow, a diet-induced obesity group (DIO) with high-fat diet, and an intervention group with high-fat diet supplemented with vitamin E (VE, 350 mg/kg). Blood and adipose tissue were collected from rats after 10 weeks. Biomarkers of oxidative stress were detected for plasma 8-epi-prostaglandin- F2α (8-epi-PGF2α), thiobarbituric acid-reactive substances (TBARS), total anti-oxidative capacity (TAOC), α-tocopherol, superoxide dismutase (SOD) activity, and glutathione peroxidase activity (GPx). Lipid and glucose metabolism parameters such as plasma glucose, insulin, and triacylglycerol (TG) were also analyzed. Results: After 10 weeks, all obese rats (both the DIO and VE groups) had higher plasma 8-epi-PGF2α and TBARS levels than the controls. Their plasma-adjusted α-tocopherol, SOD, and GPx activities were lower than the control levels but insulin was higher (p<0.01). The VE intervention increased plasma SOD, GPx, and T-AOC, and decreased 8-epi-PGF2α (p<0.05). VE intervention also decreased plasma glucose, insulin, and TG levels (p<0.05). Conclusions: Increased oxidative stress could be an important target for the prevention of obesity-related diseases. Vitamin E has moderate effects for improvement of oxidative stress status and glucose metabolism in the animal model of diet-induced obesity.


2020 ◽  
Vol 11 (1) ◽  
pp. 147-160
Author(s):  
Ranyah Shaker M. Labban ◽  
Hanan Alfawaz ◽  
Ahmed T. Almnaizel ◽  
Wail M. Hassan ◽  
Ramesa Shafi Bhat ◽  
...  

AbstractObesity and the brain are linked since the brain can control the weight of the body through its neurotransmitters. The aim of the present study was to investigate the effect of high-fat diet (HFD)-induced obesity on brain functioning through the measurement of brain glutamate, dopamine, and serotonin metabolic pools. In the present study, two groups of rats served as subjects. Group 1 was fed a normal diet and named as the lean group. Group 2 was fed an HFD for 4 weeks and named as the obese group. Markers of oxidative stress (malondialdehyde, glutathione, glutathione-s-transferase, and vitamin C), inflammatory cytokines (interleukin [IL]-6 and IL-12), and leptin along with a lipid profile (cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein levels) were measured in the serum. Neurotransmitters dopamine, serotonin, and glutamate were measured in brain tissue. Fecal samples were collected for observing changes in gut flora. In brain tissue, significantly high levels of dopamine and glutamate as well as significantly low levels of serotonin were found in the obese group compared to those in the lean group (P > 0.001) and were discussed in relation to the biochemical profile in the serum. It was also noted that the HFD affected bacterial gut composition in comparison to the control group with gram-positive cocci dominance in the control group compared to obese. The results of the present study confirm that obesity is linked to inflammation, oxidative stress, dyslipidemic processes, and altered brain neurotransmitter levels that can cause obesity-related neuropsychiatric complications.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2202
Author(s):  
Micaelle Oliveira de Luna Freire ◽  
Luciana Caroline Paulino do Nascimento ◽  
Kataryne Árabe Rimá de Oliveira ◽  
Alisson Macário de Oliveira ◽  
Thiago Henrique Napoleão ◽  
...  

High-fat diet (HFD) consumption has been linked to dyslipidemia, low-grade inflammation and oxidative stress. This study investigated the effects of a mixed formulation with Limosilactobacillusfermentum 139, L. fermentum 263 and L. fermentum 296 on cardiometabolic parameters, fecal short-chain fatty acid (SCFA) contents and biomarkers of inflammation and oxidative stress in colon and heart tissues of male rats fed an HFD. Male Wistar rats were grouped into control diet (CTL, n = 6), HFD (n = 6) and HFD with L. fermentum formulation (HFD-Lf, n = 6) groups. The L.fermentum formulation (1 × 109 CFU/mL of each strain) was administered twice a day for 4 weeks. After a 4-week follow-up, biochemical parameters, fecal SCFA, cytokines and oxidative stress variables were evaluated. HFD consumption caused hyperlipidemia, hyperglycemia, low-grade inflammation, reduced fecal acetate and propionate contents and increased biomarkers of oxidative stress in colon and heart tissues when compared to the CTL group. Rats receiving the L. fermentum formulation had reduced hyperlipidemia and hyperglycemia, but similar SCFA contents in comparison with the HFD group (p < 0.05). Rats receiving the L. fermentum formulation had increased antioxidant capacity throughout the colon and heart tissues when compared with the control group. Administration of a mixed L. fermentum formulation prevented hyperlipidemia, inflammation and oxidative stress in colon and heart tissues induced by HFD consumption.


Antioxidants ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 70 ◽  
Author(s):  
Cuauhtémoc Sandoval-Salazar ◽  
Cecilia Oviedo-Solís ◽  
Edmundo Lozoya-Gloria ◽  
Herlinda Aguilar-Zavala ◽  
Martha Solís-Ortiz ◽  
...  

It has been proposed that there is a correlation between high-fat diet (HFD), oxidative stress and decreased γ-aminobutyric acid (GABA) levels, but this has not been thoroughly demonstrated. In the present study, we determined the effects of strawberry extract intake on the oxidative stress and GABA levels in the frontal cortex (FC) of obese rats. We observed that an HFD increased lipid and protein oxidation, and decreased GABA levels. Moreover, UV-irradiated strawberry extract (UViSE) decreased lipid peroxidation but not protein oxidation, whereas non-irradiated strawberry extract (NSE) reduced protein oxidation but not lipid peroxidation. Interestingly, NSE increased GABA concentration, whereas UViSE was not as effective. In conclusion, our results suggest that an HFD increases oxidative damage in the FC, whereas strawberry extract intake may ameliorate the disturbances associated with HFD-induced oxidative damage.


RSC Advances ◽  
2016 ◽  
Vol 6 (63) ◽  
pp. 58343-58353 ◽  
Author(s):  
Sneha Jagtap ◽  
Pragyanshu Khare ◽  
Priyanka Mangal ◽  
Kanthi Kiran Kondepudi ◽  
Mahendra Bishnoi ◽  
...  

Phyllanthin delayed the progression of high fat diet induced changes affecting lipid and glucose metabolism such as adiposity, hypertriglyceridemia, fatty liver, inflammation, lipid peroxidation and insulin resistance.


Author(s):  
Abdel-Moniem A. Makhlouf ◽  
Atef M. Mahmoud ◽  
Rania G. Ibrahim ◽  
Yasmeen S. Abdel Aziz

Purpose: This study was aimed to evaluate the antioxidant and anti-inflammatory effects of vitamin D and Simvastatin (SIM) on a high-fat diet (HFD) induced-obese rats. Methods: 40 adult male rats were divided into four groups: control group, HFD, HFD + vitamin D, and HFD + SIM for 14 weeks. Vitamin D or SIM supplementation was done for the last 6 weeks. Vitamin D dosage was 500 IU/kg, while SIM dosage was 10 mg/kg. Interleukin-6 (IL-6) concentration and markers of oxidative stress including malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), and reduced glutathione(GSH) concentrations in serum were determined using ELISA kits and spectrophotometry methods, respectively. Results: Treatment with vitamin D or SIM could significantly reduce IL-6 and MDA and increases SOD, GPx activities, and GSH levels. Oxidative stress can result not only from increased ROS production but also from dysfunctional antioxidant defenses. Conclusion: From the experimental results, it was observed that SIM and vitamin D could attenuate oxidative stress and inflammation markers associated with obesity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260546
Author(s):  
Mary J. Obayemi ◽  
Christopher O. Akintayo ◽  
Adesola A. Oniyide ◽  
Ayodeji Aturamu ◽  
Olabimpe C. Badejogbin ◽  
...  

Background Adipose and hepatic metabolic dysfunctions are critical comorbidities that also aggravate insulin resistance in obese individuals. Melatonin is a low-cost agent and previous studies suggest that its use may promote metabolic health. However, its effects on some comorbidities associated with obesity are unknown. Herein, we investigated the hypothesis that melatonin supplementation would attenuate adipose-hepatic metabolic dysfunction in high fat diet (HFD)-induced obesity in male Wistar rats. Materials and methods Twenty-four adult male Wistar rats (n = 6/group) were used: Control group received vehicle (normal saline), obese group received 40% high fat diet, melatonin-treated group received 4 mg/kg of melatonin, and obese plus melatonin group received 40% HFD and melatonin. The treatment lasted for 12 weeks. Results HFD caused increased food intake, body weight, insulin level, insulin resistance and plasma and liver lipid but decreased adipose lipid. In addition, HFD also increased plasma, adipose and liver malondialdehyde, IL-6, uric acid and decreased Glucose-6-phosphate dehydrogenase, glutathione, nitric oxide and circulating obestatin concentration. However, these deleterious effects except food intake were attenuated when supplemented with melatonin. Conclusion Taken together, the present results indicate that HFD exposure causes adipose-hepatic metabolic disturbance in obese animals, which are accompanied by oxidative stress and inflammation. In addition, the present results suggest that melatonin supplementation attenuates adipose-hepatic metabolic dysfunction, accompanying obesity by suppression of oxidative stress/inflammation-dependent mechanism and increasing circulating obestatin.


Author(s):  
ZAFAR JAVED KHAN ◽  
NAEEM AHMAD KHAN

Objective: The aim of the present study was to investigate the in vivo antioxidant potential of 50% ethanolic extract of Sesamum indicum against high-fat diet-induced rats. Methods: Animals were treated with plant extract for 30 d, and a high-fat diet was given to all groups except plain control, throughout, out the study. And alpha-tocopherol acetate (Vit, E) was used as standard. Pre-treatment with 16 mg/100 gm of body weight of 50% ethanolic extract of Sesamum indicum improved the Superoxide dismutase, catalase, glutathione, and lipid peroxidation levels significantly as compared to control group. Results: The present studies revealed that Sesamum indicum has significant in vivo antioxidant activity and can be used to protect tissue from oxidative stress. The result showed that the activities of SOD, catalase, lipid peroxidase, and glutathione, in the group treated with high-fat diet declined significantly than that of normal group. Conclusion: 50% ethanolic extract of in the dose of Sesamum indicum 16 mg/100 gm of body weight, has improved the SOD, catalase, glutathione, and lipid peroxidase levels significantly, which were comparable with high-fat-diet-induced rats. Based on this study we conclude that the 50% ethanolic extract of Sesamum indicum possesses in vivo antioxidant activity and can be employed in protecting tissue from oxidative stress.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1867-P
Author(s):  
HISASHI YOKOMIZO ◽  
ATSUSHI ISHIKADO ◽  
TAKANORI SHINJO ◽  
KYOUNGMIN PARK ◽  
YASUTAKA MAEDA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document