scholarly journals Apoptotic cell-derived exosomes: messages from dying cells

2020 ◽  
Vol 52 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Ramesh Kakarla ◽  
Jaehark Hur ◽  
Yeon Ji Kim ◽  
Jaeyoung Kim ◽  
Yong-Joon Chwae

AbstractApoptosis, a type of programmed cell death that plays a key role in both healthy and pathological conditions, releases extracellular vesicles such as apoptotic bodies and microvesicles, but exosome release due to apoptosis is not yet commonly accepted. Here, the reports demonstrating the presence of apoptotic exosomes and their roles in inflammation and immune responses are summarized, together with a general summary of apoptosis and extracellular vesicles. In conclusion, apoptosis is not just a ‘silent’ type of cell death but an active form of communication from dying cells to live cells through exosomes.

Development ◽  
1994 ◽  
Vol 120 (6) ◽  
pp. 1421-1431 ◽  
Author(s):  
R.J. Rotello ◽  
P.A. Fernandez ◽  
J. Yuan

We have isolated a group of monoclonal antibodies that specifically recognize either apoptotic or engulfment cells in the interdigit areas of chicken hind limb foot plates, and throughout the embryo. Ten of these antibodies (anti-apogens) detect epitopes on dying cells that colocalize to areas of programmed cell death, characterized by the presence of apoptotic cells and bodies with typical cellular and nuclear morphology. Our results indicate that cells destined to die, or that are in the process of dying, express specific antigens that are not detectable in or on the surface of living cells. The detection of these apoptotic cell antigens in other areas of programmed cell death throughout the chick embryo indicates that different cell types, which form specific tissues and organs, may utilize similar cell death mechanisms. Six of the monoclonal antibodies (antiengulfens) define a class of engulfment cells which contain various numbers of apoptotic cells and/or apoptotic bodies in areas of programmed cell death. The immunostaining pattern of the anti-engulfen R15F is similar to that of an antibody against a common leukocyte antigen, suggesting the participation of cells from the immune system in the removal of apoptotic cell debris. These novel monoclonal antibody markers for apoptotic and engulfment cells will provide new tools to assist the further understanding of developmental programmed cell death in vertebrates.


Development ◽  
1996 ◽  
Vol 123 (1) ◽  
pp. 217-227 ◽  
Author(s):  
S. Abdelilah ◽  
E. Mountcastle-Shah ◽  
M. Harvey ◽  
L. Solnica-Krezel ◽  
A.F. Schier ◽  
...  

Programmed cell death is a prominent feature of normal animal development. During neurogenesis, naturally occurring cell death is a mechanism to eliminate neurons that fail to make appropriate connections. To prevent accidental cell death, mechanisms that trigger programmed cell death, as well as the genetic components of the cell death program, are tightly controlled. In a large-scale mutagenesis screen for embryonic lethal mutations in zebrafish Danio rerio we have found 481 mutations with a neural degeneration phenotype. Here, we present 50 mutations that fall into two classes (termed spacehead and fala-like) that are characterized by two main features: first, they appear to affect cell survival primarily within the neuroectodermal lineages during somitogenesis, and second, they show an altered brain morphology at or before 28 hours of development. Evidence for the specificity of cell death within the central nervous system comes from visual inspection of dying cells and analysis of DNA fragmentation, a process associated with apoptotic cell death. In mutants, the level of dying cells is significantly increased in brain and spinal cord. Furthermore, at the end of somitogenesis, the cell count of radial glia and trigeminal neurons is reduced in some mutants of the spacehead class. A variety of neurodegenerative disorders in mouse and humans have been associated with abnormal levels of programmed cell death within the central nervous system. The mutations presented here might provide a genetic framework to aid in the understanding of the etiology of degenerative and physiological disorders within the CNS and the activation of inappropriate programmed cell death.


2018 ◽  
Vol 46 (3) ◽  
pp. 631-639 ◽  
Author(s):  
Andrew Devitt ◽  
Helen R. Griffiths ◽  
Ivana Milic

Apoptosis is a key event in the control of inflammation. However, for this to be successful, dying cells must efficiently and effectively communicate their presence to phagocytes to ensure timely removal of dying cells. Here, we consider apoptotic cell-derived extracellular vesicles and the role of contained lipids and lipid mediators in ensuring effective control of inflammation. We discuss key outstanding issues in the study of cell death and cell communication, and introduce the concept of the ‘active extracellular vesicle’ as a metabolically active and potentially changing intercellular communicator.


1995 ◽  
Vol 4 (1) ◽  
pp. 5-15 ◽  
Author(s):  
C. Haanen ◽  
I. Vermes

During the last few decades it has been recognized that cell death is not the consequence of accidental injury, but is the expression of a cell suicide programme. Kerr et al. (1972) introduced the term apoptosis. This form of cell death is under the influence of hormones, growth factors and cytokines, which depending upon the receptors present on the target cells, may activate a genetically controlled cell elimination process. During apoptosis the cell membrane remains intact and the cell breaks into apoptotic bodies, which are phagocytosed. Apoptosis, in contrast to necrosis, is not harmful to the host and does not induce any inflammatory reaction. The principal event that leads to inflammatory disease is cell damage, induced by chemical/physical injury, anoxia or starvation. Cell damage means leakage of cell contents into the adjacent tissues, resulting in the capillary transmigration of granulocytes to the injured tissue. The accumulation of neutrophils and release of enzymes and oxygen radicals enhances the inflammatory reaction. Until now there has been little research into the factors controlling the accumulation and the tissue load of granulocytes and their histotoxic products in inflammatory processes. Neutrophil apoptosis may represent an important event in the control of intlamtnation. It has been assumed that granulocytes disintegrate to apoptotic bodies before their fragments are removed by local macrophages. Removal of neutrophils from the inflammatory site without release of granule contents is of paramount importance for cessation of inflammation. In conclusion, apoptotic cell death plays an important role in inflammatory processes and in the resolution of inflammatory reactions. The facts known at present should stimulate further research into the role of neutrophil, eosinophil and macrophage apoptosis in inflammatory diseases.


Blood ◽  
2013 ◽  
Vol 121 (5) ◽  
pp. 734-744 ◽  
Author(s):  
Paul Greaves ◽  
John G. Gribben

AbstractThe B7 family consists of structurally related, cell-surface proteins that regulate immune responses by delivering costimulatory or coinhibitory signals through their ligands. Eight family members have been identified to date including CD80 (B7-1), CD86 (B7-2), CD274 (programmed cell death-1 ligand [PD-L1]), CD273 (programmed cell death-2 ligand [PD-L2]), CD275 (inducible costimulator ligand [ICOS-L]), CD276 (B7-H3), B7-H4, and B7-H6. B7 ligands are expressed on both lymphoid and nonlymphoid tissues. The importance of the B7 family in regulating immune responses is clear from their demonstrated role in the development of immunodeficiency and autoimmune diseases. Manipulation of the signals delivered by B7 ligands shows great potential in the treatment of cancers including leukemias and lymphomas and in regulating allogeneic T-cell responses after stem cell transplantation.


Author(s):  
Dong Yang ◽  
Jian-Jun Wang ◽  
Jin-Song Li ◽  
Qian-Yu Xu

Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancer cases. Absence of miR-103 has recently been identified to be associated with metastatic capacity of primary lung tumors. However, the exact role of miR-103 in NSCLC and the molecular mechanism are unclear. In the present study, we showed that miR-103 expression was reduced in NSCLC tissues and cells. miR-103 expression was negatively correlated with tumor size and stage. The overall survival was longer in patients with higher miR-103 level than in those with lower miR-103 expression. miR-103 inhibited cell proliferation in A549 cells, decreased tumor weight and volume, and prolonged survival of tumor-implanted nude mice. miR-103 increased apoptotic cell death in A549 cells. Furthermore, miR-103 decreased the invasion and migration abilities in A549 cells, as evidenced by Transwell and wound healing results. Downregulation of miR-103 significantly reduced the level of programmed cell death 10 (PDCD10). We found a significant decrease in the relative luciferase activity of the reporter gene in A549 cells cotransfected with the miR-103 mimic and pGL3-PDCD10 WT 3′-UTR, but not pGL3-PDCD10 mut 3′-UTR. We showed that overexpression of PDCD10 significantly inhibited miR-103-induced inhibition of cell proliferation, increased apoptosis, and decreased invasion and migration in A549 cells. Moreover, we found that PDCD10 expression was increased in NSCLC tissues and cells. PDCD10 expression was positively correlated with tumor size and stage. Overexpression of PDCD10 increased cell proliferation and inhibited apoptosis in A549 cells. The data demonstrated that dysregulation of the miR-103/PDCD10 signal may be a novel therapeutic target for the treatment of NSCLC.


2004 ◽  
Vol 76 (1) ◽  
pp. 93-115 ◽  
Author(s):  
Maria Elisabete C. Moreira ◽  
Marcello A. Barcinski

Cell death by apoptosis is characterized by specific biochemical changes, including the exposure of multiple ligands, expected to tag the dying cell for prompt recognition by phagocytes. In non-pathological conditions, an efficient clearance is assured by the redundant interaction between apoptotic cell ligands and multiple receptor molecules present on the engulfing cell surface. This review concentrates on the molecular interactions operating in mammalian and non-mammalian systems for apoptotic cell recognition, as well as on the consequences of their signaling. Furthermore, some cellular models where the exposure of the phosphatidylserine (PS) phospholipid, a classical hallmark of the apoptotic phenotype, is not followed by cell death will be discussed.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2884 ◽  
Author(s):  
Eun-Jung In ◽  
Yuno Lee ◽  
Sushruta Koppula ◽  
Tae-Yeon Kim ◽  
Jun-Hyuk Han ◽  
...  

Necroptosis, or caspase-independent programmed cell death, is known to be involved in various pathological conditions, such as ischemia/reperfusion injury, myocardial infarction, atherosclerosis, and inflammatory bowel diseases. Although several inhibitors of necroptosis have been identified, none of them are currently in clinical use. In the present study, we identified a new compound, 4-({[5-(4-aminophenyl)-4-ethyl-4H-1,2,4-triazol-3-yl]sulfanyl}methyl)-N-(1,3-thiazol-2-yl) benzamide (NTB451), with significant inhibitory activity on the necroptosis induced by various triggers, such as tumor necrosis factor-α (TNF-α) and toll-like receptor (TLR) agonists. Mechanistic studies revealed that NTB451 inhibited phosphorylation and oligomerization of mixed lineage kinase domain like (MLKL), and this activity was linked to its inhibitory effect on the formation of the receptor interacting serine/threonine-protein kinase 1 (RIPK1)-RIPK3 complex. Small interfering RNA (siRNA)-mediated RIPK1 knockdown, drug affinity responsive target stability assay, and molecular dynamics (MD) simulation study illustrated that RIPK1 is a specific target of NTB451. Moreover, MD simulation showed a direct interaction of NTB451 and RIPK1. Further experiments to ensure that the inhibitory effect of NTB451 was restricted to necroptosis and NTB451 had no effect on nuclear factor-κB (NF-κB) activation or apoptotic cell death upon triggering with TNF-α were also performed. Considering the data obtained, our study confirmed the potential of NTB451 as a new necroptosis inhibitor, suggesting its therapeutic implications for pathological conditions induced by necroptotic cell death.


2019 ◽  
Vol 3 (1) ◽  
pp. 26-27
Author(s):  
Minghua Zhu ◽  
Andrew S. Barbas ◽  
Liwen Lin ◽  
Uwe Scheuermann ◽  
Muath Bishawi ◽  
...  

2020 ◽  
Author(s):  
Sergio M. Pontejo ◽  
Philip M. Murphy

AbstractChemokines are positively charged cytokines that attract leukocytes by binding to anionic glycosaminoglycans (GAGs) on endothelial cells for efficient presentation to leukocyte G protein-coupled receptors (GPCRs). The atypical chemokine CXCL16 has been reported to also bind the anionic phospholipid phosphatidylserine (PS), but the biological relevance of this interaction remains poorly understood. Here we demonstrate that PS binding is in fact a widely shared property of chemokine superfamily members that, like GAG binding, induces chemokine oligomerization. PS is an essential phospholipid of the inner leaflet of the healthy cell plasma membrane but it is exposed in apoptotic cells to act as an ‘eat-me’ signal that promotes engulfment of dying cells by phagocytes. We found that chemokines can bind PS in pure form as well as in the context of liposomes and on the surface of apoptotic cells and extracellular vesicles released by apoptotic cells, which are known to act as ‘find-me’ signals that chemoattract phagocytes during apoptotic cell clearance. Importantly, we show that GAGs are severely depleted from the surface of apoptotic cells and that extracellular vesicles extracted from apoptotic mouse thymus bind endogenous thymic chemokines and activate cognate chemokine receptors. Together these results indicate that chemokines tethered to surface-exposed PS may be responsible for the chemotactic and find-me signal activity previously attributed to extracellular vesicles, and that PS may substitute for GAGs as the anionic scaffold that regulates chemokine oligomerization and presentation to GPCRs on the GAG-deficient membranes of apoptotic cells and extracellular vesicles. Here, we present a new mechanism by which extracellular vesicles, currently recognized as essential agents for intercellular communication in homeostasis and disease, can transport signaling cytokines.


Sign in / Sign up

Export Citation Format

Share Document