scholarly journals Translational evidence for lithium-induced brain plasticity and neuroprotection in the treatment of neuropsychiatric disorders

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefano Puglisi-Allegra ◽  
Stefano Ruggieri ◽  
Francesco Fornai

AbstractIncreasing evidence indicates lithium (Li+) efficacy in neuropsychiatry, pointing to overlapping mechanisms that occur within distinct neuronal populations. In fact, the same pathway depending on which circuitry operates may fall in the psychiatric and/or neurological domains. Li+ restores both neurotransmission and brain structure unveiling that psychiatric and neurological disorders share common dysfunctional molecular and morphological mechanisms, which may involve distinct brain circuitries. Here an overview is provided concerning the therapeutic/neuroprotective effects of Li+ in different neuropsychiatric disorders to highlight common molecular mechanisms through which Li+ produces its mood-stabilizing effects and to what extent these overlap with plasticity in distinct brain circuitries. Li+ mood-stabilizing effects are evident in typical bipolar disorder (BD) characterized by a cyclic course of mania or hypomania followed by depressive episodes, while its efficacy is weaker in the opposite pattern. We focus here on neural adaptations that may underlie psychostimulant-induced psychotic development and to dissect, through the sensitization process, which features are shared in BD and other psychiatric disorders, including schizophrenia. The multiple functions of Li+ highlighted here prove its exceptional pharmacology, which may help to elucidate its mechanisms of action. These may serve as a guide toward a multi-drug strategy. We propose that the onset of sensitization in a specific BD subtype may predict the therapeutic efficacy of Li+. This model may help to infer in BD which molecular mechanisms are relevant to the therapeutic efficacy of Li+.

Author(s):  
Marissa R Keever-Keigher ◽  
Pan Zhang ◽  
Courtni R Bolt ◽  
Haley E Rymut ◽  
Adrienne M Antonson ◽  
...  

Abstract Changes at the molecular level capacitate the plasticity displayed by the brain in response to stress stimuli. Weaning stress can trigger molecular changes that influence the physiology of the offspring. Likewise, maternal immune activation (MIA) during gestation has been associated with behavior disorders and molecular changes in the amygdala of the offspring. This study advances the understanding of the effects of pre-and postnatal stressors in amygdala gene networks. The amygdala transcriptome was profiled on female and male pigs that were either exposed to viral-elicited MIA or not and were weaned or nursed. Overall, 111 genes presented interacting or independent effects of weaning, MIA or sex (FDR-adjusted P-value < 0.05). PIGY upstream reading frame (PYURF) and orthodenticle homeobox 2 (OTX2) are genes associated with MIA-related neurological disorders, and presented significant under-expression in weaned relative to nursed pigs exposed to MIA, with an opposite pattern was observed in non-MIA pigs. Enriched among the genes presenting highly over- or under-expression profiles were 24 KEGG pathways including inflammation, and neurological disorders. Our results indicate that MIA and sex can modulate the effect of weaning stress on the molecular mechanisms in the developing brain. Our findings can help identify molecular targets to ameliorate the effects of pre-and postnatal stressors on behaviors regulated by the amygdala such as aggression and feeding.


2020 ◽  
Vol 26 ◽  
Author(s):  
Nimra Javaid ◽  
Muhammad Ajmal Shah ◽  
Azhar Rasul ◽  
Zunera Chauhdary ◽  
Uzma Saleem ◽  
...  

: Neurodegeneration is a multifactorial process involved the different cytotoxic pathways that lead towards neuronal cell death. Alzheimer’s disease (AD) is a persistent neurodegenerative disorder that normally has a steady onset yet later on it worsens. The documented evidence of AD neuropathology manifested the neuro-inflammation, increased reactive oxygen, nitrogen species and decreased antioxidant protective process; mitochondrial dysfunction as well as increased level of acetylcholinesterase activity. Moreover, enhanced action of proteins leads towards neural apoptosis which have a vital role in the degeneration of neurons. The inability of commercial therapeutic options to treat AD with targeting single mechanism leads the attraction towards organic drugs. Ellagic acid is a dimer of gallic acid, latest studies expressed that ellagic acid can initiate the numerous cell signaling transmission and decrease the progression of disorders, involved in the degeneration of neurons. The influential property of ellagic acid to protect the neurons in neurodegenerative disorders is due to its antioxidant effect, iron chelating and mitochondrial protective effect. The main goal of this review is to critically analyze the molecular mode of action of ellagic acid against neurodegeneration.


Author(s):  
Yu‐Jin Kim ◽  
Sung‐Won Kim ◽  
Gwang‐Bum Im ◽  
Yeong Hwan Kim ◽  
Gun‐Jae Jeong ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1285
Author(s):  
Seong Soon Kim ◽  
Hyemin Kan ◽  
Kyu-Seok Hwang ◽  
Jung Yoon Yang ◽  
Yuji Son ◽  
...  

Epilepsy is one of the most common neurological disorders, and it is characterized by spontaneous seizures. In a previous study, we identified 4-(2-chloro-4-fluorobenzyl)-3-(2-thienyl)-1,2,4-oxadiazol-5(4H)-one (GM-90432) as a novel anti-epileptic agent in chemically- or genetically-induced epileptic zebrafish and mouse models. In this study, we investigated the anti-epileptic effects of GM-90432 through neurochemical profiling-based approach to understand the neuroprotective mechanism in a pentylenetetrazole (PTZ)-induced epileptic seizure zebrafish model. GM-90432 effectively improved PTZ-induced epileptic behaviors via upregulation of 5-hydroxytryptamine, 17-β-estradiol, dihydrotestosterone, progesterone, 5α -dihydroprogesterone, and allopregnanolone levels, and downregulation of normetanephrine, gamma-aminobutyric acid, and cortisol levels in brain tissue. GM-90432 also had a protective effect against PTZ-induced oxidative stress and zebrafish death, suggesting that it exhibits biphasic neuroprotective effects via scavenging of reactive oxygen species and anti-epileptic activities in a zebrafish model. In conclusion, our results suggest that neurochemical profiling study could be used to better understand of anti-epileptic mechanism of GM-90432, potentially leading to new drug discovery and development of anti-seizure agents.


2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Yimin Qiu ◽  
Dongmei Chen ◽  
Xiaojing Huang ◽  
Lina Huang ◽  
Liang Tang ◽  
...  

2021 ◽  
Vol 134 (16) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Fanny Jaudon and Martina Albini are co-first authors on ‘ A developmental stage- and Kidins220-dependent switch in astrocyte responsiveness to brain-derived neurotrophic factor’, published in JCS. Fanny is a postdoc at the University of Trieste in the lab of Lorenzo A. Cingolani at Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy, investigating the molecular mechanisms controlling development and function of neuronal circuits and implementing genome-editing approaches for the treatment of neurological disorders. Martina is a PhD student at the Istituto Italiano di Tecnologia in the lab of Fabio Benfenati and Fabrizia Cesca investigating neurotrophin biology and its involvement in neurological diseases.


Author(s):  
Ramin Ahangar-Sirous ◽  
Mohadeseh Poudineh ◽  
Arina Ansari ◽  
Ali Nili ◽  
Seyyed Mohammad Matin Alavi Dana ◽  
...  

: Age-related neurological disorders [ANDs] involve neurodegenerative diseases [NDDs] such as Alzheimer's disease [AD], the most frequent kind of dementia in elderly people, and Parkinson's disease [PD], and also other disorders like epilepsy and migraine. Although ANDs are multifactorial, Aging is a principal risk factor for them. The common and most main pathologic features among ANDs are inflammation, oxidative stress, and misfolded proteins accumulation. Since failing brains caused by ANDs impose a notable burden on public health and their incidence is increasing, a lot of works has been done to overcome them. Garlic, Allium sativum, has been used for different medical purposes globally and more than thousands of publications have reported its health benefits. Garlic and aged garlic extract are considered potent anti-inflammatory and antioxidants agents and can have remarkable neuroprotective effects. This review is aimed to summarize knowledge on the pharmacotherapeutic potential of garlic and its components in ANDs.


Sign in / Sign up

Export Citation Format

Share Document