scholarly journals GATA6 promotes epithelial-mesenchymal transition and metastasis through MUC1/β-catenin pathway in cholangiocarcinoma

2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Xiang Deng ◽  
Peng Jiang ◽  
Jian Chen ◽  
Jianwei Li ◽  
Dajiang Li ◽  
...  

Abstract GATA6 acts as an oncogene or tumour suppressor in different cancers. Previously, we found that aberrant expression of GATA6 promoted metastasis in cholangiocarcinoma (CCA). However, the mechanism by which GATA6 promotes metastasis in CCA is unclear. In the present study, we aimed to investigate the role of GATA6 in CCA cell epithelial–mesenchymal transition (EMT). Our results showed that GATA6 expression was positively associated with N-cadherin and vimentin expression but negatively associated with E-cadherin expression in 91 CCA samples. GATA6 promoted EMT and metastasis in CCA cells in vitro and in vivo based on knockdown and overexpression analyses. ChIP-sequencing data revealed that MUC1 is a novel downstream target of GATA6. GATA6 upregulated MUC1 expression through binding to both the 1584 and 1456 GATA-motifs in the promoter region and enhancing its transcription by luciferase reporter assays and point-mutant assays. MUC1 expression was positively associated with N-cadherin and vimentin expression but negatively associated with E-cadherin expression in 91 CCA samples. In addition, MUC1 promoted EMT in CCA cells based on knockdown and overexpression analyses. Moreover, MUC1 knockdown significantly abrogated the GATA6-induced EMT in CCA cells, indicating that MUC1 promoted EMT through upregulating MUC1 in CCA cells. β-Catenin is a putative transcriptional coactivator that regulates EMT in cancers. Our data showed that MUC1 expression was positively associated with nuclear β-catenin expression in 91 CCA samples. MUC1 upregulated nuclear β-catenin expression in CCA cells. Moreover, MUC1 bound to β-catenin in CCA cells based on protein immunoprecipitation analyses. MUC1 knockdown significantly decreased the binding of MUC1 to β-catenin, and thereby decreased nuclear β-catenin protein levels in CCA cells, indicating that MUC1 bound to β-catenin and increased its nuclear expression in CCA cells. Together, our results show that GATA6 promotes EMT through MUC1/β-catenin pathway in CCA, indicating potential implications for anti-metastatic therapy.

2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Ming-Jun Fan ◽  
Yong-Hui Zou ◽  
Peng-Juan He ◽  
Shuai Zhang ◽  
Xiao-Mei Sun ◽  
...  

AbstractBackground: Emerging evidences have indicated that long non-coding RNAs (LncRNAs) play vital roles in cancer development and progression. Previous studies have suggested that overexpression of SPRY4 intronic transcript 1 (SPRY4-IT1) predicates poor prognosis and promotes tumor progress in cervical cancer (CC). However, the underlying mechanism of SPRY4-IT1 in CC remains unknown. The aim of the present study is to evaluate the function and mechanism of SPRY4-IT1 in CC.Methods: SPRY4-IT1 was detected by quantitative PCR. Wound-healing assay and Transwell assay were performed to detect cell migration and invasion, respectively. Western blotting assays were used to analyze the protein expression of E-cadherin, N-cadherin and vimentin. Tumor xenografts experiments were performed to detect the effect of SPRY4-IT1 in vivo. Dual luciferase reporter assay was used to investigate potential molecular mechanism of SPRY4-IT1 in CC cells.Results: SPRY4-IT1 was up-regulated in CC cell lines. Knockdown of SPRY4-IT1 significantly inhibited CC cells migration and invasion in vitro and in vivo. Moreover, knockdown of SPRY4-IT1 significantly suppressed the epithelial–mesenchymal transition (EMT) of CC by increased E-cadherin expression and decreased the N-cadherin and vimentin expression. Mechanically, SPRY4-IT1 could directly bind to miR-101-3p and effectively act as a competing endogenous RNA (ceRNA) for miR-101-3p to regulate the expression of the target gene ZEB1.Conclusions: Our findings indicate that the SPYR4-IT1/miR-101-3p/ZEB1 axis contributes to CC migration and invasion, which may provide novel insights into the function of lncRNA-driven tumorigenesis of CC.


2019 ◽  
Vol 9 (9) ◽  
pp. 1215-1221
Author(s):  
Li Jie ◽  
Zhangcai Zheng ◽  
Liping Liu ◽  
Yali Liu ◽  
Zhaoyan Meng ◽  
...  

Preeclampsia (PE) is an idiopathic hypertension syndrome occurring after 20 weeks of gestation. Reports showed that lncRNAs expression was abnormal in preeclampsia. We aimed to investigate the role of lncRNA CEACAMP8 in the proliferation, invasion and migration of trophoblast cells to improve the preeclampsia. The cell transfection effects were determined by RT-qPCR analysis. The proliferation, invasion and migration of HTR-8/SVneo cells were detected by CCK-8 assay, transwell assay and wound healing assay. The flow cytometry analysis analyzed the cell cycle. Moreover, the expression of CDK2, cyclinD1, P21, MMP2, MMP9, E-cadherin, b-catenin and vimentin was determined by the western blot analysis. Consequently, CEACAMP8 inhibition promoted the proliferation, invasion and migration of HTR-8/SVneo cells and kept most of the cells in the S phase. The expression of proteins related to the proliferation, invasion and migration of HTR-8/SVneo cells were also changed in accordance with the increase of proliferation, invasion and migration of HTR-8/SVneo cells. In addition, lncRNA CEACAMP8 inhibition decreased the expression of E-cadherin and b-catenin, and increased the vimentin expression to promote the epithelial-mesenchymal transition. And, CEACAMP8 overexpression could reverse the above changes. This study indicated that CEACAMP8 inhibition promoted the proliferation, invasion and migration of HTR-8/SVneo cells and lncRNA CEACAMP8 overexpression reversed.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Yan Wu ◽  
Dan Jin ◽  
Xiaohong Wang ◽  
Jing Du ◽  
Weihua Di ◽  
...  

Objectives. Cisplatin (DDP) is one of the most commonly used chemotherapeutic drugs for several cancers, including non-small-cell lung cancer (NSCLC). However, resistance to DDP eventually develops, limiting its further application. New therapy targets are urgently needed to reverse DDP resistance.Methods. The mRNA expression ofUBE2C,ZEB1/2,ABCG2, andERCC1was analyzed by reverse transcription-polymerase chain reaction. The protein levels of these molecules were analyzed by Western blotting and immunofluorescent staining. Cell proliferation was detected by CCK8 and MTT assays. Cell migration and invasion were analyzed by wound healing assay and Transwell assays. Promoter activities and gene transcription were analyzed by luciferase reporter assay.Results.In this study, we examined the effect of UBE2C and ZEB1/2 expression levels in DDP-resistant cells of NSCLC. We confirmed that aberrant expression of UBE2C and ZEB1/2 plays a critical role in repressing the DDP sensitivity to NSCLC cells. Additionally, knockdown of UBE2C significantly sensitized resistant cells to DDP by repressing the expression of ZEB1/2. Mechanistic investigations indicated that UBE2C transcriptionally regulated ZEB1/2 by accelerating promoter activity. This study revealed that ZEB1/2 promotes the epithelial mesenchymal transition and expression of ABCG2 and ERCC1 to participate in UBE2C-mediated NSCLC DDP-resistant cell progression, metastasis, and invasion.Conclusion. UBE2C may be a novel therapy target for NSCLC for sensitizing cells to the chemotherapeutic agent DDP.


2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Y. Zhang ◽  
L. F. Wang ◽  
J. H. Gao ◽  
L. Li ◽  
P. Jiang ◽  
...  

Background Epithelial–mesenchymal transition (emt) refers to the biologic process in which epithelial cells are transformed into interstitial phenotypes by specific pathways. This transition plays an important biologic role in the process by which epithelium-derived malignant tumour cells acquire the ability to migrate and invade. We explored the relationship between emt-associated molecules and patient-related clinical factors to determine whether any clinical characteristics could be used as biomarkers for emt-related protein alterations in lung cancer—especially lung adenocarcinoma.Methods Tumour specimens were collected from 80 patients with lung adenocarcinoma who underwent surgery or lung biopsy, with 4 patients being evaluated a 2nd time after re-biopsy. Expression of emt-related proteins, including E-cadherin and vimentin, was evaluated by immunohistochemistry. We analyzed the relationship between clinicopathologic characteristics and expression level of the emt markers.Results Positive expression of E-cadherin was observed in 63 patients (79%), and vimentin, in 46 patients (57.5%). No significant relationships between E-cadherin or vimentin expression and smoking history, sex, age, driving gene mutations, or cell differentiation were identified. A significant correlation was observed between vimentin expression and pathologic stage. Of the 4 patients who were evaluated a 2nd time after re-biopsy, 3 showed the same emt-related protein expression status as in the first analysis. In the remaining patient, E-cadherin had changed completely.Conclusions Clinicopathologic factors in cancer patients did not help to diagnose emt status in lung adenocarcinoma; however, TNM stage might be associated with vimentin expression.


2022 ◽  
Vol 12 (4) ◽  
pp. 848-853
Author(s):  
Peng Sun ◽  
Duojiao Fan ◽  
Jing Cao ◽  
Haiyan Zhou ◽  
Fan Yang ◽  
...  

Abnormal MEK1 expression is associated with tumor cell EMT, invasion and metastasis. Decreased miR-16 level is associated with glioma. Bioinformatics analysis showed a relationship between miR-16 and MEK1. This study assessed whether miR-16 regulates MEK1 expression and affects glioma cell EMT and invasion. The tumor tissues and adjacent glioma tissues were collected to measure miR-16 and MEK1 mRNA. The dual luciferase assay validated the relation of miR-16 with MEK1. U251 cells were cultured and assigned into NC group and mimic group, followed by analysis of cell biological behaviors, and MEK1, p-ERK1/2, E-cadherin, N-Cadherin expression. Compared with adjacent tissues, miR-16 expression was significantly decreased and MEK1 was elevated in glioma tissues. Compared with HEB, miR-16 in glioma U251 and SHG44 cells was decreased and MEK1 was increased. Dual luciferase reporter gene experiments confirmed the relation of miR-16 with MEK1. Transfection of miR-16 mimic significantly down-regulated MEK1, p-ERK1/2 and N-cadherin in U251 cells, upregulated E-cadherin, inhibited cell proliferation, promoted apoptosis, and attenuated EMT and invasion of glioma cells. In conclusion, decreased miR-16 expression and increased MEK1 expression is related to glioma pathogenesis. Overexpression of miR-16 can inhibit MEK1 expression, ERK/MAPK signaling, glioma cell proliferation, promote apoptosis, and attenuate EMT and invasion.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ben Yue ◽  
Chenlong Song ◽  
Linxi Yang ◽  
Ran Cui ◽  
Xingwang Cheng ◽  
...  

Abstract Background As one of the most frequent chemical modifications in eukaryotic mRNAs, N6-methyladenosine (m6A) modification exerts important effects on mRNA stability, splicing, and translation. Recently, the regulatory role of m6A in tumorigenesis has been increasingly recognized. However, dysregulation of m6A and its functions in tumor epithelial-mesenchymal transition (EMT) and metastasis remain obscure. Methods qRT-PCR and immunohistochemistry were used to evaluate the expression of methyltransferase-like 3 (METTL3) in gastric cancer (GC). The effects of METTL3 on GC metastasis were investigated through in vitro and in vivo assays. The mechanism of METTL3 action was explored through transcriptome-sequencing, m6A-sequencing, m6A methylated RNA immunoprecipitation quantitative reverse transcription polymerase chain reaction (MeRIP qRT-PCR), confocal immunofluorescent assay, luciferase reporter assay, co-immunoprecipitation, RNA immunoprecipitation and chromatin immunoprecipitation assay. Results Here, we show that METTL3, a major RNA N6-adenosine methyltransferase, was upregulated in GC. Clinically, elevated METTL3 level was predictive of poor prognosis. Functionally, we found that METTL3 was required for the EMT process in vitro and for metastasis in vivo. Mechanistically, we unveiled the METTL3-mediated m6A modification profile in GC cells for the first time and identified zinc finger MYM-type containing 1 (ZMYM1) as a bona fide m6A target of METTL3. The m6A modification of ZMYM1 mRNA by METTL3 enhanced its stability relying on the “reader” protein HuR (also known as ELAVL1) dependent pathway. In addition, ZMYM1 bound to and mediated the repression of E-cadherin promoter by recruiting the CtBP/LSD1/CoREST complex, thus facilitating the EMT program and metastasis. Conclusions Collectively, our findings indicate the critical role of m6A modification in GC and uncover METTL3/ZMYM1/E-cadherin signaling as a potential therapeutic target in anti-metastatic strategy against GC.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Bin Qiao ◽  
Bao-Xia He ◽  
Jing-Hua Cai ◽  
Qian Tao ◽  
Alfred King-yin Lam

AbstractThis study aimed to elucidate how microRNA27a-3p (miR-27a-3p) modulates the Wnt/β-catenin signaling pathway to promote the epithelial-mesenchymal transition (EMT) in oral squamous carcinoma stem cells (OSCSCs) by targeting secreted frizzled-related protein 1 (SFRP1). Flow cytometry was used to sort OSCSCs from the SCC-9 and Tca8113 cell lines. The OSCSCs were randomly assigned into the miR-27a-3p inhibitors group, the miR-27a-3p inhibitors-NC group, the si-SFRP1 group, the si-SFRP1 + miR-27a-3p inhibitors group and the blank group. A luciferase reporter, immunofluorescence and Transwell assays were performed to detect luciferase activity, SFRP1, and cell migration and invasion, respectively. The mRNA expression of miR-27a-3p, SFRP1 and EMT markers (E-cadherin, N-cadherin, vimentin and ZEB1) were detected using qRT-PCR. The protein expression of SFRP1, EMT markers and the proteins of the Wnt/β-catenin signaling pathway was detected by Western blotting. OSCSCs showed up-regulated miR-27a-3p, Wnt/β-catenin signaling pathway-related proteins, vimentin, N-cadherin and ZEB1 and down-regulated SFRP1 and E-cadherin. MiR-27a-3p targeted SFRP1. Down-regulated miR-27a-3p resulted in increased E-cadherin and SFRP1 but decreased vimentin, N-cadherin, ZEB1, the Wnt/β-catenin signaling pathway-related proteins, and invasive and migratory cells. Silenced SFRP1 reversed this effect. We found that miR-27a-3p modulated the Wnt/β-catenin signaling pathway to promote EMT in OSCSCs by down-regulating SFRP1.


Author(s):  
Manvir S. Tevatia ◽  
Prabhashankar Mishra ◽  
Ajay K. Baranwal ◽  
Prachi B. Nichat ◽  
Divya Shelly ◽  
...  

Abstract Overview Mesenchymal tumors of the breast are rare. Few epithelial tumors also have mesenchymal components. It is crucial to identify these as per histogenesis. This can be facilitated by markers of epithelial–mesenchymal transition (EMT) Objectives The aim of this study was to categorize the breast lesions with mesenchymal morphology and to study EMT on immunohistochemistry (IHC). Materials and Methods This is a retrospective study of 5-year duration from January 2015 to December 2019. Inclusion criteria: all breast lesions showing mesenchymal/nonepithelial morphology, complete or partial, on histology. Exclusion criteria: Mammary carcinomas without any mesenchymal/nonepithelial morphology, fibroadenomas, and lymphomas. Demographics, clinical, gross examination, histology, and IHC findings of selected cases were reviewed and recorded. Three additional markers p53, E-cadherin, and β-catenin were performed. Statistical Analysis Used Frequency calculation for each variable (IHC). Results Thirteen (2.5%) out of total 510 breast specimens showed mesenchymal histology. Of these, five (38.5%) were metaplastic breast carcinomas (MBC), four (31%) were phyllodes tumor (PT), and one (7.7%) case each of malignant peripheral nerve sheath tumor, primary stromal sarcoma of breast, pseudoangiomatous stromal hyperplasia, and myofibroblastoma. Loss of E-cadherin was seen in 4/5 (80%) MBCs and was retained in ductal component of PTs. p53 was not expressed in any of the tumors except 3/5 (60%) MBCs. β-Catenin was aberrant in all MBCs. Conclusions Primary breast tumors with mesenchymal morphology present a spectrum ranging from benign mesenchymal, fibroepithelial neoplasms to malignant tumors of mesenchymal and epithelial origin. Loss of E-cadherin, expression of p53, and aberrant expression of β-catenin are suggestive of EMT and molecular heterogeneity of MBCs.


2021 ◽  
Vol 10 (18) ◽  
pp. 4076
Author(s):  
Enke Baldini ◽  
Chiara Tuccilli ◽  
Daniele Pironi ◽  
Antonio Catania ◽  
Francesco Tartaglia ◽  
...  

The transcription factors involved in epithelial–mesenchymal transition (EMT-TFs) silence the genes expressed in epithelial cells (e.g., E-cadherin) while inducing those typical of mesenchymal cells (e.g., vimentin). The core set of EMT-TFs comprises Zeb1, Zeb2, Snail1, Snail2, and Twist1. To date, information concerning their expression profile and clinical utility during thyroid cancer (TC) progression is still incomplete. We evaluated the EMT-TF, E-cadherin, and vimentin mRNA levels in 95 papillary TC (PTC) and 12 anaplastic TC (ATC) tissues and correlated them with patients’ clinicopathological parameters. Afterwards, we corroborated our findings by analyzing the data provided by a case study of the TGCA network. Compared with normal tissues, the expression of E-cadherin was found reduced in PTC and more strongly in ATC, while the vimentin expression did not vary. Among the EMT-TFs analyzed, Twist1 seems to exert a prominent role in EMT, being significantly associated with a number of PTC high-risk clinicopathological features and upregulated in ATC. Nonetheless, in the multivariate analysis, none of the EMT-TFs displayed a prognostic value. These data suggest that TC progression is characterized by an incomplete EMT and that Twist1 may represent a valuable therapeutic target warranting further investigation for the treatment of more aggressive thyroid cancers.


Sign in / Sign up

Export Citation Format

Share Document