scholarly journals The crosstalk between HIFs and mitochondrial dysfunctions in cancer development

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Xingting Bao ◽  
Jinhua Zhang ◽  
Guomin Huang ◽  
Junfang Yan ◽  
Caipeng Xu ◽  
...  

AbstractMitochondria are essential cellular organelles that are involved in regulating cellular energy, metabolism, survival, and proliferation. To some extent, cancer is a genetic and metabolic disease that is closely associated with mitochondrial dysfunction. Hypoxia-inducible factors (HIFs), which are major molecules that respond to hypoxia, play important roles in cancer development by participating in multiple processes, such as metabolism, proliferation, and angiogenesis. The Warburg phenomenon reflects a pseudo-hypoxic state that activates HIF-1α. In addition, a product of the Warburg effect, lactate, also induces HIF-1α. However, Warburg proposed that aerobic glycolysis occurs due to a defect in mitochondria. Moreover, both HIFs and mitochondrial dysfunction can lead to complex reprogramming of energy metabolism, including reduced mitochondrial oxidative metabolism, increased glucose uptake, and enhanced anaerobic glycolysis. Thus, there may be a connection between HIFs and mitochondrial dysfunction. In this review, we systematically discuss the crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Above all, the stability and activity of HIFs are closely influenced by mitochondrial dysfunction related to tricarboxylic acid cycle, electron transport chain components, mitochondrial respiration, and mitochondrial-related proteins. Furthermore, activation of HIFs can lead to mitochondrial dysfunction by affecting multiple mitochondrial functions, including mitochondrial oxidative capacity, biogenesis, apoptosis, fission, and autophagy. In general, the regulation of tumorigenesis and development by HIFs and mitochondrial dysfunction are part of an extensive and cooperative network.

2021 ◽  
pp. 0271678X2110421
Author(s):  
Abdelhakim Khellaf ◽  
Nuria Marco Garcia ◽  
Tamara Tajsic ◽  
Aftab Alam ◽  
Matthew G Stovell ◽  
...  

Following traumatic brain injury (TBI), raised cerebral lactate/pyruvate ratio (LPR) reflects impaired energy metabolism. Raised LPR correlates with poor outcome and mortality following TBI. We prospectively recruited patients with TBI requiring neurocritical care and multimodal monitoring, and utilised a tiered management protocol targeting LPR. We identified patients with persistent raised LPR despite adequate cerebral glucose and oxygen provision, which we clinically classified as cerebral ‘mitochondrial dysfunction’ (MD). In patients with TBI and MD, we administered disodium 2,3-13C2 succinate (12 mmol/L) by retrodialysis into the monitored region of the brain. We recovered 13C-labelled metabolites by microdialysis and utilised nuclear magnetic resonance spectroscopy (NMR) for identification and quantification. Of 33 patients with complete monitoring, 73% had MD at some point during monitoring. In 5 patients with multimodality-defined MD, succinate administration resulted in reduced LPR(−12%) and raised brain glucose(+17%). NMR of microdialysates demonstrated that the exogenous 13C-labelled succinate was metabolised intracellularly via the tricarboxylic acid cycle. By targeting LPR using a tiered clinical algorithm incorporating intracranial pressure, brain tissue oxygenation and microdialysis parameters, we identified MD in TBI patients requiring neurointensive care. In these, focal succinate administration improved energy metabolism, evidenced by reduction in LPR. Succinate merits further investigation for TBI therapy.


Author(s):  
N. Svyrydova

The development of primary and repeated disorders of cerebral circulation, vascular dementia, transient ischemic attacks, which are a consequence of the development of acute pathology in patients with hypertensive encephalopathy, lead to a state of persistent disability and disability. Today, the emphasis of treatment is placed on the important role of oxygen deficiency, which leads to the restriction of aerobic energy production due to disturbances in the energy-synthesizing function of the mitochondrial respiratory chain, depletion of endogenous antioxidant stores and activation of lipid peroxidation of cell membranes, leading to death of brain cells. By 2018, a large evidence base for the effectiveness of the use of metabolic therapy in neurology, which takes into account an important factor of the impact of comorbidity of the pathology. The effectiveness of antioxidant therapy in acute and chronic cerebrovascular diseases is confirmed by the fact that the antioxidant improves energy metabolism in the cell, and as a metabolite of the tricarboxylic acid cycle (succinate, which provides pronounced antioxidant and antihypoxic properties) has a positive effect on the main links of pathogenesis of diseases associated with processes freely Radical oxidation. It is proved that the preparation of Mexicor reduces the manifestation of oxidative stress, inhibits free radical peroxide oxidation of lipids, improves cellular energy metabolism, activates the energy-synthesizing functions of mitochondria, enhances compensatory activation of aerobic glycolysis and reduces the degree of inhibition of oxidative processes in the Krebs cycle. The drug Mexocor has a wide spectrum of pharmacological action, which allows it to be used successfully in acute and chronic cerebrovascular diseases, accompanied by vascular comorbidity.


2021 ◽  
Vol 14 ◽  
Author(s):  
Xiuqin Zheng ◽  
Hui Fan ◽  
Yang Liu ◽  
Zhonghong Wei ◽  
Xiaoman Li ◽  
...  

: Hypoxia, a common feature in malignant tumors, is mainly caused by insufficient oxygen supply. Hypoxia is closely related to cancer development, affecting cancer invasion and metastasis, energy metabolism and other pathological processes, and is not conducive to cancer treatment and prognosis. Tumor cells exacerbate metabolic abnormalities to adapt to the hypoxic microenvironment, especially to enhance aerobic glycolysis. Glycolysis leads to an acidic microenvironment in cancer tissues, enhancing cancer metastasis, deterioration and drug resistance. Therefore, hypoxia is a therapeutic target that cannot be ignored in cancer treatment. The adaptation of tumor cells to hypoxia is mainly regulated by hypoxia inducible factors (HIFs), and the stability of HIFs is improved under hypoxic conditions. HIFs can promote the glycolysis of tumors by regulating glycolytic enzymes, transporters, and participates in regulating the TCA (tricarboxylic acid) cycle. In addition, HIFs indirectly affect glycolysis through its interaction with non-coding RNAs. Therefore, targeting hypoxia and HIFs are important tumor therapies.


Author(s):  
Abolaji Samson Olagunju ◽  
Abiola Adeyanju Alagbe ◽  
Titilayomi Ayomide Otenaike ◽  
Babatunde Oladayo Fabiyi ◽  
John Oluwafemi Teibo ◽  
...  

Mitochondrial dysfunctions remained a pivotal mechanism in manifold neurodegenerative diseases. Mitochondrial homeostasis within the cell is an essential aspect of cell biology. Mitochondria which is also known as the power-generating set of the cell, have a dominant role in several processes associated with the genomic integrity and cellular equilibrium maintenance. They are involved in maintaining optimal cells functioning and guidance from possible DNA damage which could lead to mutations and onset of diseases. Conversely, system perturbations which could be due to environmental factors or senescence induce changes in the physiological balance and result in the mitochondrial functions impairment. The focal point of this review focuses on mitochondrial dysfunction as a significant condition in the onset of neuronal disintegration. We explain the pathways associated with the dysfunction of the mitochondria which are common amongst the most recurring neurodegenerative diseases including Alzheimers and Parkinsons disease. Do mitochondrial dysfunctions represent an early event in causing a shift towards neuropathological processes?


Pharmacology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Zhongyuan Piao ◽  
Lin Song ◽  
Lifen Yao ◽  
Limei Zhang ◽  
Yichan Lu

Introduction: Schisandrin which is derived from Schisandra chinensis has shown multiple pharmacological effects on various diseases including Alzheimer’s disease (AD). It is demonstrated that mitochondrial dysfunction plays an essential role in the pathogenesis of neurodegenerative disorders. Objective: Our study aims to investigate the effects of schisandrin on mitochondrial functions and metabolisms in primary hippocampal neurons. Methods: In our study, rat primary hippocampal neurons were isolated and treated with indicated dose of amyloid β1–42 (Aβ1–42) oligomer to establish a cell model of AD in vitro. Schisandrin (2 μg/mL) was further subjected to test its effects on mitochondrial function, energy metabolism, mitochondrial biogenesis, and dynamics in the Aβ1–42 oligomer-treated neurons. Results and Conclusions: Our findings indicated that schisandrin significantly alleviated the Aβ1–42 oligomer-induced loss of mitochondrial membrane potential and impaired cytochrome c oxidase activity. Additionally, the opening of mitochondrial permeability transition pore and release of cytochrome c were highly restricted with schisandrin treatment. Alterations in cell viability, ATP production, citrate synthase activity, and the expressions of glycolysis-related enzymes demonstrated the relief of defective energy metabolism in Aβ-treated neurons after the treatment of schisandrin. For mitochondrial biogenesis, elevated expression of peroxisome proliferator-activated receptor γ coactivator along with promoted mitochondrial mass was found in schisandrin-treated cells. The imbalance in the cycle of fusion and fission was also remarkably restored by schisandrin. In summary, this study provides novel mechanisms for the protective effect of schisandrin on mitochondria-related functions.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Bo-Htay ◽  
T Shwe ◽  
S Palee ◽  
T Pattarasakulchai ◽  
K Shinlapawittayatorn ◽  
...  

Abstract Background D-galactose (D-gal) induced ageing has been shown to exacerbate left ventricular (LV) dysfunction via worsening of apoptosis and mitochondrial dysfunction in the heart of obese rats. Hyperbaric oxygen therapy (HBOT) has been demonstrated to exert anti-inflammatory and anti-apoptotic effects in multiple neurological disorders. However, the cardioprotective effect of HBOT on inflammation, apoptosis, LV and mitochondrial functions in D-gal induced ageing rats in the presence of obese-insulin resistant condition has never been investigated. Purpose We sought to determine the effect of HBOT on inflammation, apoptosis, mitochondrial functions and LV function in pre-diabetic rats with D-gal induced ageing. We hypothesized that HBOT attenuates D-gal induced cardiac mitochondrial dysfunctions and reduces inflammation and apoptosis, leading to improved LV function in pre-diabetic rats. Methods Forty-eight male Wistar rats were fed with either normal diet or high-fat diet for 12 weeks. Then, rats were treated with either vehicle groups (0.9% NSS, subcutaneous injection (SC)) or D-gal groups (150 mg/kg/day, SC) for 8 weeks. At week 21, rats in each group were equally divided into 6 sub-groups: normal diet fed rats treated with vehicle (NDV) sham, normal diet fed rats treated with D-gal (NDDg) sham, high fat diet fed rats treated with D-gal (HFDg) sham, high fat diet fed rats treated with vehicle (HFV) + HBOT, NDDg + HBOT and HFDg + HBOT. Sham treated rats were given normal concentration of O2 (flow rate of 80 L/min, 1 ATA for 60 minutes), whereas HBOT treated rats were subjected to 100% O2 (flow rate of 250 L/min, 2 ATA for 60 minutes), given once daily for 2 weeks. Results Under obese-insulin resistant condition, D-gal-induced ageing aggravated LV dysfunction (Fig 1A) and impaired cardiac mitochondrial function, increased cardiac inflammatory and apoptotic markers (Fig 1B). HBOT markedly reduced cardiac TNF-α level and TUNEL positive apoptotic cells, and improved cardiac mitochondrial function as indicated by decreased mitochondrial ROS production, mitochondrial depolarization and mitochondrial swelling, resulting in the restoration of the normal LV function in HFV and NDDg rats, compared to sham NDDg rats. In addition, in HFDg treated rats, HBOT attenuated cardiac TNF-α level, TUNEL positive apoptotic cells and cardiac mitochondrial dysfunction, compared to sham HFDg rats, leading to improved cardiac function as indicated by increased %LV ejection fraction (LVEF) (Figure 1). Conclusion HBOT efficiently alleviates D-gal-induced-age-related LV dysfunction through mitigating inflammation, apoptosis and mitochondrial dysfunction in pre-diabetic rats. Figure 1 Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): 1. The National Science and Technology Development Agency Thailand, 2. Thailand Research Fund Grants


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yanan Shi ◽  
Jingjing Zhu ◽  
Yan Xu ◽  
Xiaozhao Tang ◽  
Zushun Yang ◽  
...  

Abstract Background Protein lysine malonylation, a novel post-translational modification (PTM), has been recently linked with energy metabolism in bacteria. Staphylococcus aureus is the third most important foodborne pathogen worldwide. Nonetheless, substrates and biological roles of malonylation are still poorly understood in this pathogen. Results Using anti-malonyl-lysine antibody enrichment and high-resolution LC-MS/MS analysis, 440 lysine-malonylated sites were identified in 281 proteins of S. aureus strain. The frequency of valine in position − 1 and alanine at + 2 and + 4 positions was high. KEGG pathway analysis showed that six categories were highly enriched, including ribosome, glycolysis/gluconeogenesis, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA), valine, leucine, isoleucine degradation, and aminoacyl-tRNA biosynthesis. In total, 31 malonylated sites in S. aureus shared homology with lysine-malonylated sites previously identified in E. coli, indicating malonylated proteins are highly conserved among bacteria. Key rate-limiting enzymes in central carbon metabolic pathways were also found to be malonylated in S. aureus, namely pyruvate kinase (PYK), 6-phosphofructokinase, phosphoglycerate kinase, dihydrolipoyl dehydrogenase, and F1F0-ATP synthase. Notably, malonylation sites were found at or near protein active sites, including KH domain protein, thioredoxin, alanine dehydrogenase (ALD), dihydrolipoyl dehydrogenase (LpdA), pyruvate oxidase CidC, and catabolite control protein A (CcpA), thus suggesting that lysine malonylation may affect the activity of such enzymes. Conclusions Data presented herein expand the current knowledge on lysine malonylation in prokaryotes and indicate the potential roles of protein malonylation in bacterial physiology and metabolism.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 229
Author(s):  
JunHyuk Woo ◽  
Hyesun Cho ◽  
YunHee Seol ◽  
Soon Ho Kim ◽  
Chanhyeok Park ◽  
...  

The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5′-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Qiuyun Yuan ◽  
Wanchun Yang ◽  
Shuxin Zhang ◽  
Tengfei Li ◽  
Mingrong Zuo ◽  
...  

Abstract Background Malignant glioma exerts a metabolic shift from oxidative phosphorylation (OXPHOs) to aerobic glycolysis, with suppressed mitochondrial functions. This phenomenon offers a proliferation advantage to tumor cells and decrease mitochondria-dependent cell death. However, the underlying mechanism for mitochondrial dysfunction in glioma is not well elucidated. MTCH2 is a mitochondrial outer membrane protein that regulates mitochondrial metabolism and related cell death. This study aims to clarify the role of MTCH2 in glioma. Methods Bioinformatic analysis from TCGA and CGGA databases were used to investigate the association of MTCH2 with glioma malignancy and clinical significance. The expression of MTCH2 was verified from clinical specimens using real-time PCR and western blots in our cohorts. siRNA-mediated MTCH2 knockdown were used to assess the biological functions of MTCH2 in glioma progression, including cell invasion and temozolomide-induced cell death. Biochemical investigations of mitochondrial and cellular signaling alternations were performed to detect the mechanism by which MTCH2 regulates glioma malignancy. Results Bioinformatic data from public database and our cohort showed that MTCH2 expression was closely associated with glioma malignancy and poor patient survival. Silencing of MTCH2 expression impaired cell migration/invasion and enhanced temozolomide sensitivity of human glioma cells. Mechanistically, MTCH2 knockdown may increase mitochondrial OXPHOs and thus oxidative damage, decreased migration/invasion pathways, and repressed pro-survival AKT signaling. Conclusion Our work establishes the relationship between MTCH2 expression and glioma malignancy, and provides a potential target for future interventions.


Sign in / Sign up

Export Citation Format

Share Document