scholarly journals Inhibition of CCL7 derived from Mo-MDSCs prevents metastatic progression from latency in colorectal cancer

2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xiaoli Ren ◽  
Jianbiao Xiao ◽  
Wanning Zhang ◽  
Feifei Wang ◽  
Yongrong Yan ◽  
...  

AbstractIn colorectal cancer (CRC), overt metastases often appear after years of latency. But the signals that cause micro-metastatic cells to remain indolent, thereby enabling them to survive for extended periods of time, are unclear. Immunofluorescence and co-immunoprecipitation assays were used to explore the co-localization of CCL7 and CCR2. Immunohistochemical (IHC) assays were employed to detect the characters of metastatic HT29 cells in mice liver. Flow cytometry assays were performed to detect the immune cells. Bruberin vivo MS FX Pro Imager was used to observe the liver metastasis of CRC in mice. Quantitative real-time PCR (qRT-PCR) and western blot were employed to detect the expressions of related proteins. Trace RNA sequencing was employed to identify differentially expressed genes in MDSCs from liver micro-M and macro-M of CRC in mice. Here, we firstly constructed the vitro dormant cell models and metastatic dormant animal models of colorectal cancer. Then we found that myeloid-derived suppressor cells (MDSCs) were increased significantly from liver micro-metastases to macro-metastases of CRC in mice. Moreover, monocytic MDSCs (Mo-MDSC) significantly promoted the dormant activation of micro-metastatic cells compared to polymorphonuclear MDSCs (PMN-MDSC). Mechanistically, CCL7 secreted by Mo-MDSCs bound with membrane protein CCR2 of micro-metastatic cells and then stimulated the JAK/STAT3 pathway to activate the dormant cells. Low-dose administration of CCL7 and MDSCs inhibitors in vivo could significantly maintain the CRC metastatic cells dormant status for a long time to reduce metastasis or recurrence after radical operation. Clinically, the level of CCL7 in blood was positively related to the number of Mo-MDSCs in CCR patients, and highly linked with the short-time recurrence and distant metastasis. CCL7 secreted by Mo-MDSCs plays an important role in initiating the outgrowth of metastatic latent CRC cells. Inhibition of CCL7 might provide a potential therapeutic strategy for the prevention of metastasis recurrence.

2018 ◽  
Vol 40 (1) ◽  
pp. 24-32
Author(s):  
K CB Chaves ◽  
E M Costa ◽  
L F Teixeira ◽  
M H Bellini

Aim: To evaluate the role of endostatin (ES) gene therapy on myeloid-derived suppressor cells (MDSC) in a metastatic model of renal cell carcinoma (RCC). Materials and Methods: Balb/C mice bearing orthotopic Renca tumors were treated with NIH/3T3LendSN or, as a control, with NIH/3T3-LXSN cells. At the end of in vivo experiment, plasma and tissue lung samples were collected. Plasma ES and granulocyte colony stimulating factor (G-CSF) levels were measured by ELISA and Milliplex, respectively. Quantification of CD11b+Gr-1+ cells and their subsets was performed by flow cytometry. Reactive oxygen species (ROS) production was measured in CD11b+Gr-1+ MDSC using the DCFDA marker by flow cytometry. Results: Metastatic RCC (mRCC) induced expansions of CD11b+Gr-1+ MDSC and promoted accumulation of these cells and their subtypes in lymphoid organ and metastases. ES treatment promoted low G-CSF plasmatic levels which were produced by the tumor microenvironment, reflecting the reduced metastatic accumulation of CD11b+Gr-1+ MDSC in the lungs. However, the therapy was selective for granulocytic cells, thus reducing the production of ROS. Conclusion: These findings confirm the expansion of MDSC during metastatic progression of RCC and indicate the important role of ES in reducing MDSC and possible use of ES therapy in combined anticancer treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Guo ◽  
Defeng Liu ◽  
Shihao Peng ◽  
Meng Wang ◽  
Yangyang Li

BackgroundColorectal cancer (CRC) is a common malignant tumor with high metastatic and recurrent rates. This study probes the effect and mechanism of long non-coding RNA MIR31HG on the progression of CRC cells.Materials and MethodsQuantitative real-time PCR (qRT-PCR) was used to analyze the expression of MIR31HG and miR-361-3p in CRC tissues and normal tissues. Gain- or loss-of-function assays were conducted to examine the roles of MIR31HG, miR-361-3p and YY1 transcription factor (YY1) in the CRC progression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and colony formation experiment were conducted to test CRC cell proliferation. CRC cell invasion was determined by Transwell assay. The glucose detection kit and lactic acid detection kit were utilized to monitor the levels of glucose and lactate in CRC cells. The glycolysis level in CRC cells was examined by the glycolytic stress experiment. Western blot was performed to compare the expression of glycolysis-related proteins (PKM2, GLUT1 and HK2) and angiogenesis-related proteins (including VEGFA, ANGPT1, HIF1A and TIMP1) in HUVECs. The binding relationships between MIR31HG and miR-361-3p, miR-361-3p and YY1 were evaluated by the dual-luciferase reporter assay and RNA immunoprecipitation (RIP).ResultsMIR31HG was up-regulated in CRC tissues and was associated with poorer prognosis of CRC patients. The in-vitro and in-vivo experiments confirmed that overexpressing MIR31HG heightened the proliferation, growth, invasion, glycolysis and lung metastasis of CRC cells as well as the angiogenesis of HUVECs. In addition, MIR3HG overexpression promoted YY1 mRNA and protein level, and forced overexpression of YY1 enhanced MIR31HG level. Overexpressing YY1 reversed the tumor-suppressive effect mediated by MIR31HG knockdown. miR-361-3p, which was inhibited by MIR31HG overexpression, repressed the malignant behaviors of CRC cells. miR-361-3p-mediated anti-tumor effects were mostly reversed by upregulating MIR31HG. Further mechanism studies illustrated that miR-361-3p targeted and negatively regulated the expression of YY1.ConclusionThis study reveals that MIR31HG functions as an oncogenic gene in CRC via forming a positive feedback loop of MIR31HG-miR-361-3p-YY1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Enhao Li ◽  
Xiaobao Yang ◽  
Yuzhang Du ◽  
Guanzheng Wang ◽  
David W. Chan ◽  
...  

Accumulating evidence suggests that tumor-infiltrating immune cells (TICs) in the tumor microenvironment (TME) serve as promising therapeutic targets. CXCL8 (IL-8) may also be a potential therapeutic target in cancer. CXCL8 is a potent chemotactic factor for neutrophils, myeloid-derived suppressor cells (MDSCs) and monocytes, which are considered immunosuppressive components in cancer-bearing hosts. Here, we identified the TME-related gene CXCL8 in a high-ImmuneScore population that contributed to better survival in colorectal cancer (CRC) patients from The Cancer Genome Atlas (TCGA) database. An integrated gene profile and functional analysis of TIC proportions revealed that the dendritic cell (DC) activation markers CD80, CD83, and CD86 were positively correlated with CXCL8 expression, suggesting that CXCL8 may be functional as antitumor immune response status in the TME. The gene signature was further validated in independent GSE14333 and GSE38832 cohorts from the Gene Expression Omnibus (GEO). To test the differential contributions of immune and tumor components to progression, three CRC cell lines, CT26, MC38 and HCT116, were used. In vitro results suggested no significant growth or survival changes following treatment with an inhibitor of the CXCL8 receptor (CXCR1/2) such as reparixin or danirixin. In vivo treatment with danirixin (antagonists of CXCR2) promoted tumor progression in animal models established with CT26 cells. CXCR2 antagonism may function via an immune component, with CXCR2 antagonist treatment in mice resulting in reduced activated DCs and correlating with decreased Interferon gamma (IFN-γ) or Granzyme B expressed CD8+ T cells. Furthermore, CXCL8 induced DC migration in transwell migration assays. Taken together, our data suggested that targeting the CXCL8-CXCR2 axis might impede DC activation or recruitment, and this axis could be considered a favorable factor rather than a target for critical antitumor effects on CRC.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zongxia Wang ◽  
Lizhou Jia ◽  
Yushu sun ◽  
Chunli Li ◽  
Lingli Zhang ◽  
...  

Trophoblast cell surface protein 2 (Trop2) is one of the cancer-related proteins that plays a vital role in biological aggressiveness and poor prognosis of colorectal cancer (CRC). The study of the Trop2 related network is helpful for us to understand the mechanism of tumorigenesis. However, the effects of the related proteins interacting with Trop2 in CRC remain unclear. Here, we found that coronin-like actin-binding protein 1C (CORO1C) could interact with Trop2 and the expression of CORO1C in CRC tissues was higher than that in paracarcinoma tissues. The expression of CORO1C was associated with histological type, lymph node metastasis, distant metastasis, AJCC stage, venous invasion, and perineural invasion. The correlation between CORO1C expression and clinical characteristics was analyzed demonstrating that high CORO1C expression in CRC patients were associated with poor prognosis. Furthermore, CORO1C knockdown could decrease the cell proliferation, colony formation, migration and invasion in vitro and tumor growth in vivo. The underlying mechanisms were predicted by bioinformatics analysis and verified by Western blotting. We found that PI3K/AKT signaling pathway was significantly inhibited by CORO1C knockdown and the tuomr-promoting role of CORO1C was leastwise partly mediated by PI3K/AKT signaling pathway. Thus, CORO1C may be a valuable prognostic biomarker and drug target in CRC patients.


2020 ◽  
Vol 6 (20) ◽  
pp. eaba1590 ◽  
Author(s):  
Xue Dong ◽  
Pei Pan ◽  
Di-Wei Zheng ◽  
Peng Bao ◽  
Xuan Zeng ◽  
...  

Mounting evidence suggests that the gut microbiota contribute to colorectal cancer (CRC) tumorigenesis, in which the symbiotic Fusobacterium nucleatum (Fn) selectively increases immunosuppressive myeloid-derived suppressor cells (MDSCs) to hamper the host’s anticancer immune response. Here, a specifically Fn-binding M13 phage was screened by phage display technology. Then, silver nanoparticles (AgNP) were assembled electrostatically on its surface capsid protein (M13@Ag) to achieve specific clearance of Fn and remodel the tumor-immune microenvironment. Both in vitro and in vivo studies showed that of M13@Ag treatment could scavenge Fn in gut and lead to reduction in MDSC amplification in the tumor site. In addition, antigen-presenting cells (APCs) were activated by M13 phages to further awaken the host immune system for CRC suppression. M13@Ag combined with immune checkpoint inhibitors (α-PD1) or chemotherapeutics (FOLFIRI) significantly prolonged overall mouse survival in the orthotopic CRC model.


Author(s):  
Jinxiao Li ◽  
Man Hu ◽  
Na Liu ◽  
Huarong Li ◽  
Zhaomin Yu ◽  
...  

Abstract Background The mechanism of histone deacetylase 3 (HDAC3) in colorectal cancer (CRC) has already been discussed. However, the feedback loop of HDAC3/microRNA (miR)-296-3p and transforming growth factor β-induced factor 1 (TGIF1) in CRC has not been explained clearly. Thus, the mainstay of this study is to delve out the mechanism of this axis in CRC. Methods To demonstrate that HDAC3 regulates the miR-296-3p/TGIF1/TGFβ axis and is involved in CRC progression, a series of cell biological, molecular and biochemical approaches were conducted from the clinical research level, in vitro experiments and in vivo experiments. These methods included RT-qPCR, Western blot assay, cell transfection, MTT assay, EdU assay, flow cytometry, scratch test, Transwell assay, dual luciferase reporter gene assay, chromatin immunoprecipitation, nude mouse xenograft, H&E staining and TUNEL staining. Results Higher HDAC3 and TGIF1 and lower miR-296-3p expression levels were found in CRC tissues. HDAC3 was negatively connected with miR-296-3p while positively correlated with TGIF1, and miR-296-3p was negatively connected with TGIF1. Depleted HDAC3 elevated miR-296-3p expression and reduced TGIF1 expression, decreased TGFβ pathway-related proteins, inhibited CRC proliferation, invasion, and migration in vitro and slowed down tumor growth and induction of apoptosis in vivo, which were reversed by miR-296-3p knockdown. Restored miR-296-3p suppressed TGIF1 and reduced TGFβ pathway-related proteins, inhibited CRC proliferation, invasion, and migration in vitro and slowed down tumor growth and induction of apoptosis in vivo, which were reversed by TGIF1 overexpression. Conclusion This study illustrates that down-regulation of HDAC3 or TGIF1 or up-regulation of miR-296-3p discourages CRC cell progression and slows down tumor growth, which guides towards a novel direction of CRC treatment.


2021 ◽  
Vol 9 (1) ◽  
pp. e001895
Author(s):  
Chao Liu ◽  
Ruiqi Liu ◽  
Bojun Wang ◽  
Jie Lian ◽  
Yang Yao ◽  
...  

BackgroundImmune checkpoint inhibitors (ICIs), including anti-PD-1 therapy, have limited efficacy in patients with microsatellite stable (MSS) colorectal cancer (CRC). Interleukin 17A (IL-17A) activity leads to a protumor microenvironment, dependent on its ability to induce the production of inflammatory mediators, mobilize myeloid cells and reshape the tumor environment. In the present study, we aimed to investigate the role of IL-17A in resistance to antitumor immunity and to explore the feasibility of anti-IL-17A combined with anti-PD-1 therapy in MSS CRC murine models.MethodsThe expression of programmed cell death-ligand 1 (PD-L1) and its regulation by miR-15b-5p were investigated in MSS CRC cell lines and tissues. The effects of miR-15b-5p on tumorigenesis and anti-PD-1 treatment sensitivity were verified both in vitro and in colitis-associated cancer (CAC) and APCmin/+ murine models. In vivo efficacy and mechanistic studies were conducted using antibodies targeting IL-17A and PD-1 in mice bearing subcutaneous CT26 and MC38 tumors.ResultsEvaluation of clinical pathological specimens confirmed that PD-L1 mRNA levels are associated with CD8+ T cell infiltration and better prognosis. miR-15b-5p was found to downregulate the expression of PD-L1 at the protein level, inhibit tumorigenesis and enhance anti-PD-1 sensitivity in CAC and APCmin/+ CRC models. IL-17A led to high PD-L1 expression in CRC cells through regulating the P65/NRF1/miR-15b-5p axis. Combined IL-17A and PD-1 blockade had efficacy in CT26 and MC38 tumors, with more cytotoxic T lymphocytes cells and fewer myeloid-derived suppressor cells in tumors.ConclusionsIL-17A increases PD-L1 expression through the p65/NRF1/miR-15b-5p axis and promotes resistance to anti-PD-1 therapy. Blocking IL-17A improved the efficacy of anti-PD-1 therapy in MSS CRC murine models. IL-17A might serve as a therapeutic target to sensitize patients with MSS CRC to ICI therapy.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Norihiro Yamaguchi ◽  
Ethan M Weinberg ◽  
Alexander Nguyen ◽  
Maria V Liberti ◽  
Hani Goodarzi ◽  
...  

Colorectal cancer (CRC) is a major cause of human death. Mortality is primarily due to metastatic organ colonization, with the liver being the main organ affected. We modeled metastatic CRC (mCRC) liver colonization using patient-derived primary and metastatic tumor xenografts (PDX). Such PDX modeling predicted patient survival outcomes. In vivo selection of multiple PDXs for enhanced metastatic colonization capacity upregulated the gluconeogenic enzyme PCK1, which enhanced liver metastatic growth by driving pyrimidine nucleotide biosynthesis under hypoxia. Consistently, highly metastatic tumors upregulated multiple pyrimidine biosynthesis intermediary metabolites. Therapeutic inhibition of the pyrimidine biosynthetic enzyme DHODH with leflunomide substantially impaired CRC liver metastatic colonization and hypoxic growth. Our findings provide a potential mechanistic basis for the epidemiologic association of anti-gluconeogenic drugs with improved CRC metastasis outcomes, reveal the exploitation of a gluconeogenesis enzyme for pyrimidine biosynthesis under hypoxia, and implicate DHODH and PCK1 as metabolic therapeutic targets in CRC metastatic progression.


Pharmacology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Yu-Xuan Wang ◽  
Cheng Lin ◽  
Lu-Jia Cui ◽  
Wan-He Yang ◽  
Qiu-Min Li ◽  
...  

<b><i>Background:</i></b> Colorectal cancer (CRC) is one of the most frequent digestive tract tumors in the world with an increasing incidence. Currently, surgical resection and chemotherapy are the main therapeutic options; however, their effects are limited by various adverse reactions. <i>Rauwolfia vomitoria</i> extract (Rau) has been shown to repress the progression of multiple human cancers; however, whether Rau plays a role in CRC remains undetermined. <b><i>Methods:</i></b> Influences of Rau treatment on HCT-116 and LoVo cells were estimated via MTT and colony formation experiments. Flow cytometry analysis was adopted to evaluate the apoptosis rate of HCT-116 and LoVo cells. Apoptosis-related proteins (Bcl-2, Bax, and caspase-3) and autophagy-related proteins (LC3 and P62) were assessed by Western blotting. Effects of Rau on autophagy of HCT-116 and LoVo cell were evaluated through GFP-LC3 analysis. In vivo xenograft tumor assay was conducted to further examine the role of Rau in CRC tumor growth. <b><i>Results:</i></b> Rau remarkably repressed HCT-116 and LoVo cell viability and promoted HCT-116 and LoVo cell apoptosis in vitro in a dose-dependent manner. Rau increased the expression of caspase-3 and Bax and decreased the expression of Bcl-2 in HCT-116 and LoVo cells. Moreover, Rau was demonstrated to decrease the LC3||/LC3| ratio and increase the level of P62 in HCT-116 and LoVo cells. In addition, we found that Rau repressed xenograft tumor growth and also repressed autophagy in vivo. <b><i>Conclusion:</i></b> Our findings revealed that Rau repressed CRC cell viability and autophagy in vitro and in vivo, suggesting that Rau might be a potent therapeutic agent of CRC.


2016 ◽  
Vol 24 (22) ◽  
pp. 6004-6011 ◽  
Author(s):  
Luciana G. Naso ◽  
Iker Badiola ◽  
Joana Marquez Clavijo ◽  
María Valcarcel ◽  
Clarisa Salado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document