scholarly journals RBM15-mediated N6-methyladenosine modification affects COVID-19 severity by regulating the expression of multitarget genes

2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Yuting Meng ◽  
Qiong Zhang ◽  
Kaihang Wang ◽  
Xujun Zhang ◽  
Rongwei Yang ◽  
...  

AbstractSevere coronavirus disease 2019 (COVID-19) is characterized by symptoms of lymphopenia and multiorgan damage, but the underlying mechanisms remain unclear. To explore the function of N6-methyladenosine (m6A) modifications in COVID-19, we performed microarray analyses to comprehensively characterize the m6A epitranscriptome. The results revealed distinct global m6A profiles in severe and mild COVID-19 patients. Programmed cell death and inflammatory response were the major biological processes modulated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Further, RBM15, a major m6A methyltransferase, was significantly elevated and positively correlated with disease severity. Silencing RBM15 drastically reduced lymphocyte death in vitro. Knockdown of RBM15 remarkably suppressed the expression levels of multitarget genes related to programmed cell death and inflammatory response. This study shows that SARS-CoV-2 infection alters the m6A epitranscriptome of lymphocytes, particularly in the case of severe patients. RBM15 regulated host immune response to SARS-CoV-2 by elevating m6A modifications of multitarget genes. These findings indicate that RBM15 can serve as a target for the treatment of COVID-19.

2020 ◽  
Author(s):  
André C. Ferreira ◽  
Vinicius Cardoso Soares ◽  
Isaclaudia G. de Azevedo-Quintanilha ◽  
Suelen da Silva Gomes Dias ◽  
Natalia Fintelman-Rodrigues ◽  
...  

AbstractInfection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with leukopenia and uncontrolled inflammatory response in critically ill patients. A better comprehension of SARS-CoV-2-induced monocyte death is essential for the identification of therapies capable to control the hyper-inflammation and reduce viral replication in patients with COVID-19. Here, we show that SARS-CoV-2 induces inflammasome activation and cell death by pyroptosis in human monocytes, experimentally infected and from patients under intensive care. Pyroptosis was dependent on caspase-1 engagement, prior to IL-1ß production and inflammatory cell death. Monocytes exposed to SARS-CoV-2 downregulate HLA-DR, suggesting a potential limitation to orchestrate the immune response. Our results originally describe mechanisms by which monocytes, a central cellular component recruited from peripheral blood to respiratory tract, succumb to control severe 2019 coronavirus disease (COVID-19).Author summarySince its emergence in China in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused thousands of deaths worldwide. Currently, the number of individuals infected with SARS-CoV-2 and in need of antiviral, anti-inflammatory, anticoagulant and more invasive treatments has overwhelmed the health systems worldwide. In our study, we found that SARS-CoV-2 is capable of inducing inflammatory cell death in human monocytes, one of the main cell types responsible for anti-SARS-CoV-2 immune response. As a consequence of this intracellular inflammatory mechanism (inflammasome engagement), an exacerbated production of inflammatory mediators occurs. The infection also decreases the expression of HLA-DR in monocytes, a molecule related to the orchestration of the immune response in case of viral infections. We also demonstrated that the HIV-1 protease inhibitor, atazanavir (ATV), prevented the uncontrolled inflammatory response, cell death and reduction in HLA-DR expression in SARS-CoV-2-infected monocytes. Our study provides relevant information on the effects of SARS-CoV-2 infection on human monocytes, as well as on the effect of ATV in preventing these pathological effects on the host.


2020 ◽  
pp. 1-7
Author(s):  
Kamla Prasad Mishra ◽  
Ajay Kumar Singh ◽  
Shashi Bala Singh

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) pandemic has affected millions of people worldwide. The pathophysiology of this virus is not very clearly known, thus, enormous efforts are being made by the scientific community to delineate its evading mechanism. In this review, we have summarized the hyperinflammation and humoral and cell-mediated immune response generated in human body after infection with the SARS-CoV-2 virus. The inflammatory response generated after infection by increased proinflammatory cytokines and chemokines, and complement proteins activation may likely contribute to disease severity. We also discussed the other factors that may affect immunity and could be important comorbidities in the disease severity and outcome.


2021 ◽  
Author(s):  
Tiesuo Zhao ◽  
Yang Li ◽  
Miaomiao Liu ◽  
Lin Zhou ◽  
Zunge Wu ◽  
...  

Abstract Programmed cell death 1 ligand 1(PD-L1) binds with programmed cell death protein 1 (PD-1) to inhibit the responses of T cells. PD-L1 is significantly upregulated on tumor cells and blocking the PD-L1/PD-1 signal has become an important target of immunotherapy in clinic. At present, some old drugs of non-antitumor have been found that could play the effect of anti-tumor. Maprotiline, as a tetracyclic antidepressant, has been widely used for treating mental depression. Here, we study the anti-tumor effect of maprotiline by strengthening the immune response of mice. In vitro, treatment with maprotiline inhibits the proliferation and migration of B16 cells, increases the cell apoptosis. Importantly, treatment with maprotiline reduces the expression of PD-L1 in tumor tissue, prompts the ratios of CD4+ T cells, CD8+ T cells and NK cells in spleens, increases the infiltration of CD4+ and CD8+ T cells in tumor-tissues. In brief, we determine that maprotiline could prompt the anti-tumor immune response by inhibiting the PD-L1 in mice. This study may find a new inhibitor of PD-L1, which provides a new drug treated tumor in clinical.


2021 ◽  
Author(s):  
Yu ling Chang ◽  
Yaqian Niu ◽  
Fang Liu ◽  
Yan mei Song ◽  
Huiyuan Chu ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is the second leading cause of cancer worldwide, causing 700,000 deaths annually. Despite decades of extensive research of HCC, the prognosis of HCC remains unsatisfactory, mainly due to lack of reliable sensitive biomarkers. Therefore, it is fundamentally important to identify novel biomarkers for early diagnosis of HCC, as well as explore the underlying mechanisms of HCC progression. Pyroptosis, a highly inflammatory form of lytic programmed cell death, is attracting more attention in HCC. microRNAs are involved in the regulation of pyroptosis. miR-183-5p, an oncogene, is up-regulated in HCC, but it is unclear the relationship between miR-183-5p and pyroptosis in HCC, which was investigated in vitro. Our data demonstrated that miR-183-5p promoted proliferation of HCC, accompanied with upregulating pyroptosis related molecules, as well as IL-1β/IL-18.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 194
Author(s):  
Jutta Ries ◽  
Abbas Agaimy ◽  
Falk Wehrhan ◽  
Christoph Baran ◽  
Stella Bolze ◽  
...  

Background: The programmed cell death ligand 1/programmed cell death receptor 1 (PD-L1/PD-1) Immune Checkpoint is an important modulator of the immune response. Overexpression of the receptor and its ligands is involved in immunosuppression and the failure of an immune response against tumor cells. PD-1/PD-L1 overexpression in oral squamous cell carcinoma (OSCC) compared to healthy oral mucosa (NOM) has already been demonstrated. However, little is known about its expression in oral precancerous lesions like oral leukoplakia (OLP). The aim of the study was to investigate whether an increased expression of PD-1/PD-L1 already exists in OLP and whether it is associated with malignant transformation. Material and Methods: PD-1 and PD-L1 expression was immunohistologically analyzed separately in the epithelium (E) and the subepithelium (S) of OLP that had undergone malignant transformation within 5 years (T-OLP), in OLP without malignant transformation (N-OLP), in corresponding OSCC and in NOM. Additionally, RT-qPCR analysis for PD-L1 expression was done in the entire tissues. Additionally, the association between overexpression and malignant transformation, dysplasia and inflammation were examined. Results: Compared to N-OLP, there were increased levels of PD-1 protein in the epithelial and subepithelial layers of T-OLP (pE = 0.001; pS = 0.005). There was no significant difference in PD-L1 mRNA expression between T-OLP and N-OLP (p = 0.128), but the fold-change increase between these groups was significant (Relative Quantification (RQ) = 3.1). In contrast to N-OLP, the PD-L1 protein levels were significantly increased in the epithelial layers of T-OLP (p = 0.007), but not in its subepithelial layers (p = 0.25). Importantly, increased PD-L1 levels were significantly associated to malignant transformation within 5 years. Conclusion: Increased levels of PD-1 and PD-L1 are related to malignant transformation in OLP and may represent a promising prognostic indicator to determine the risk of malignant progression of OLP. Increased PD-L1 levels might establish an immunosuppressive microenvironment, which could favor immune escape and thereby contribute to malignant transformation. Hence, checkpoint inhibitors could counteract tumor development in OLP and may serve as efficient therapeutic strategy in patients with high-risk precancerous lesions.


Blood ◽  
1996 ◽  
Vol 87 (11) ◽  
pp. 4746-4753 ◽  
Author(s):  
A Cayota ◽  
F Vuillier ◽  
G Gonzalez ◽  
G Dighiero

Oxidative stress has been proposed to be involved in the immunologic defeat observed in effector calls of the immune system as well as in lymphocyte cell death and viral replication in human immunodeficiency virus (HIV)-infected patients. Because thiol-containing antioxidants such as N-acetyl-L-cysteine have been shown to have beneficial effects on CD4+ lymphocyte survival and to inhibit programmed cell death and HIV-1 replication, they may play a role in therapeutic strategies of this disease. In this work we have studied the cellular thiol levels and the affect of in vitro antioxidant treatment of purified CD4+ lymphocytes from HIV-infected patients, and correlated these parameters to proliferative responses and programmed cell death. We show that CD4+ lymphocytes from HIV-infected patients display impaired proliferative responses and a significant decrease in cellular thiol levels, indicating a disturbed redox status. Interestingly, antioxidant treatment succeeded to restore defective proliferative responses to CD3- mediated activation in 8 of 11 patients (high antioxidant responders). In contrast to high responders, patients failing to respond to antioxidant treatment (low antioxidant responders), were characterized by an abnormal ratio of apoptotic cells, which was not affected by N- acetyl-L-cysteine and/or 2-beta-mercaptoethanol preincubation. These results demonstrate for the first time that antioxidant treatment is able to revert the impaired proliferative activity of CD4 cells from HIV-infected patients and could help designing therapeutic strategies with antioxidant drugs. However, this action is not observed in cells undergoing programmed cell death.


2012 ◽  
Vol 209 (6) ◽  
pp. 1201-1217 ◽  
Author(s):  
Tadashi Yokosuka ◽  
Masako Takamatsu ◽  
Wakana Kobayashi-Imanishi ◽  
Akiko Hashimoto-Tane ◽  
Miyuki Azuma ◽  
...  

Programmed cell death 1 (PD-1) is a negative costimulatory receptor critical for the suppression of T cell activation in vitro and in vivo. Single cell imaging elucidated a molecular mechanism of PD-1–mediated suppression. PD-1 becomes clustered with T cell receptors (TCRs) upon binding to its ligand PD-L1 and is transiently associated with the phosphatase SHP2 (Src homology 2 domain–containing tyrosine phosphatase 2). These negative costimulatory microclusters induce the dephosphorylation of the proximal TCR signaling molecules. This results in the suppression of T cell activation and blockade of the TCR-induced stop signal. In addition to PD-1 clustering, PD-1–TCR colocalization within microclusters is required for efficient PD-1–mediated suppression. This inhibitory mechanism also functions in PD-1hi T cells generated in vivo and can be overridden by a neutralizing anti–PD-L1 antibody. Therefore, PD-1 microcluster formation is important for regulation of T cell activation.


2020 ◽  
Author(s):  
Purva Karia ◽  
Keiko Yoshioka ◽  
Wolfgang Moeder

ABSTRACTThe role of mitochondria in programmed cell death (PCD) during animal growth and development is well documented, but much less is known for plants. We previously showed that the Arabidopsis thaliana triphosphate tunnel metalloenzyme (TTM) proteins TTM1 and TTM2 are tail-anchored proteins that localize in the mitochondrial outer membrane and participate in PCD during senescence and immunity, respectively. Here, we show that TTM1 is specifically involved in senescence induced by abscisic acid (ABA). Moreover, phosphorylation of TTM1 by multiple mitogen-activated protein kinases (MAPKs) regulates its function and turnover. A combination of proteomics and in vitro kinase assays revealed three major phosphorylation sites of TTM1 (S10, S437, and S490), which are phosphorylated upon perception of senescence cues such as ABA and prolonged darkness. S437 is phosphorylated by the MAP kinases MPK3 and MPK4, and S437 phosphorylation is essential for TTM1 function in senescence. These MPKs, together with three additional MAP kinases (MPK1, MPK7, and MPK6), phosphorylate S10 and S490, marking TTM1 for protein turnover, which likely prevents uncontrolled cell death. Taken together, our results show that multiple MPKs regulate the function and turnover of the mitochondrial protein TTM1 during senescence-related PCD, revealing a novel link between mitochondria and PCD.SummaryEmail addresses: [email protected]


Sign in / Sign up

Export Citation Format

Share Document