scholarly journals Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ignacio M. Pérez-Ramos ◽  
Luis Matías ◽  
Lorena Gómez-Aparicio ◽  
Óscar Godoy
2020 ◽  
Vol 125 (6) ◽  
pp. 969-980 ◽  
Author(s):  
Silvia Matesanz ◽  
Marina Ramos-Muñoz ◽  
Mario Blanco-Sánchez ◽  
Adrián Escudero

Abstract Background and Aims Plants experiencing contrasting environmental conditions may accommodate such heterogeneity by expressing phenotypic plasticity, evolving local adaptation or a combination of both. We investigated patterns of genetic differentiation and plasticity in response to drought in populations of the gypsum specialist Lepidium subulatum. Methods We created an outdoor common garden with rain exclusion structures using 60 maternal progenies from four distinct populations that substantially differ in climatic conditions. We characterized fitness, life history and functional plasticity in response to two contrasting treatments that realistically reflect soil moisture variation in gypsum habitats. We also assessed neutral genetic variation and population structure using microsatellite markers. Key Results In response to water stress, plants from all populations flowered earlier, increased allocation to root tissues and advanced leaf senescence, consistent with a drought escape strategy. Remarkably, these probably adaptive responses were common to all populations, as shown by the lack of population × environment interaction for almost all functional traits. This generally common pattern of response was consistent with substantial neutral genetic variation and large differences in population trait means. However, such population-level trait variation was not related to climatic conditions at the sites of origin. Conclusions Our results show that, rather than ecotypes specialized to local climatic conditions, these populations are composed of highly plastic, general-purpose genotypes in relation to climatic heterogeneity. The strikingly similar patterns of plasticity among populations, despite substantial site of origin differences in climate, suggest past selection on a common norm of reaction due to similarly high levels of variation within sites. It is thus likely that plasticity will have a prevalent role in the response of this soil specialist to further environmental change.


2019 ◽  
Author(s):  
Ignacio Manuel Perez-Ramos ◽  
Luis Matias ◽  
Lorena Gomez Aparicio ◽  
Oscar Godoy

Functional traits are expected to modulate plant competitive dynamics. However, how traits and their plasticity in response to contrasting environments connect with the mechanisms determining species coexistence remains poorly understood. Here, we coupled field experiments under two contrasted climatic conditions to a plant population model describing competitive dynamics between 10 annual plant species in order to evaluate the associations of niche and fitness differences with 19 functional traits covering physiological, morphological and reproductive characteristics. We found a rich diversity of univariate and multidimensional relationships, in which outstand the primary role of traits related to water- and light-use-efficiency in modulating the determinants of competitive outcomes. Importantly, such traits and their plasticity promoted species coexistence across climatic conditions by enhancing stabilizing niche differences and by generating competitive trade-offs between species. Our study represents a significant advance showing how leading dimensions of plant form and function connect to the mechanisms determining the maintenance of biodiversity.


2019 ◽  
Vol 46 (1) ◽  
pp. 63-74
Author(s):  
Stefano Mattioli

The rediscovery of the original, unedited Latin manuscript of Georg Wilhelm Steller's “De bestiis marinis” (“On marine mammals”), first published in 1751, calls for a new translation into English. The main part of the treatise contains detailed descriptions of four marine mammals, but the introduction is devoted to more general issues, including innovative speculation on morphology, ecology and biogeography, anticipating arguments and concepts of modern biology. Steller noted early that climate and food have a direct influence on body size, pelage and functional traits of mammals, potentially affecting reversible changes (phenotypic plasticity). Feeding and other behavioural habits have an impact on the geographical distribution of mammals. Species with a broad diet tend to have a wide distribution, whereas animals with a narrow diet more likely have only a restricted range. According to Steller, both sea and land then still concealed countless animals unknown to science.


2021 ◽  
Author(s):  
Genda Singh ◽  
Bilas Singh

Abstract Background: Plants adapt to adverse environmental conditions accumulate varying concentrations of carbon (C), nitrogen (N) and sulfur (S) compounds to cope up with adverse climatic conditions. Carbon, N and S concentrations were determined in roots, stem and leaves of 33 species of trees/shrubs with objectives to observe the effects of life-form and plants functional traits, and select species with high concentration of these elements for their utilization in afforestation and medicinal uses. Results: Concentrations of C, N, and S and C: N and N: S ratio varied (P<0.05) between species, organs, life-forms and functional traits (legume vs non-legume). These variables were higher (except C in roots and stem) in trees than shrubs, and in leguminous than non-leguminous species. Non-leguminous species showed high S content and low N: S ratio. Antagonistic and synergistic relations were observed between C and N, and N and S concentration respectively. Species showed varying potential in assimilating carbon by regulating uptake and accumulation of these elements in different organs making them adapt to the habitats affected by drought and salinity. We observed strong plant size/life-form effects on C and N content and C: N and N: S ratios and of function on S content. Conclusions: Life-form/size and varying functions of the species determined C: nutrient ratio and elemental composition and helped adapting varying environmental stresses. This study assist in selecting species of high carbon, nitrogen and S content to utilize them in afforesting the areas affected by water and salt stresses, increased carbon storage and species with high S/N content in medicinal uses.


AoB Plants ◽  
2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Ming Hao Wang ◽  
Jing Ru Wang ◽  
Xiao Wei Zhang ◽  
Ai Ping Zhang ◽  
Shan Sun ◽  
...  

Abstract Global climate change is expected to affect mountain ecosystems significantly. Phenotypic plasticity, the ability of any genotype to produce a variety of phenotypes under different environmental conditions, is critical in determining the ability of species to acclimate to current climatic changes. Here, to simulate the impact of climate change, we compared the physiology of species of the genus Picea from different provenances and climatic conditions and quantified their phenotypic plasticity index (PPI) in two contrasting common gardens (dry vs. wet), and then considered phenotypic plastic effects on their future adaptation. The mean PPI of the photosynthetic features studied was higher than that of the stomatal features. Species grown in the arid and humid common gardens were differentiated: the stomatal length (SL) and width (SW) on the adaxial surface, the transpiration rate (Tr) and leaf mass per area (LMA) were more highly correlated with rainfall than other traits. There were no significant relationships between the observed plasticity and the species’ original habitat, except in P. crassifolia (from an arid habitat) and P. asperata (from a humid habitat). Picea crassifolia exhibited enhanced instantaneous efficiency of water use (PPI = 0.52) and the ratio of photosynthesis to respiration (PPI = 0.10) remained constant; this species was, therefore, considered to the one best able to acclimate when faced with the effects of climate change. The other three species exhibited reduced physiological activity when exposed to water limitation. These findings indicate how climate change affects the potential roles of plasticity in determining plant physiology, and provide a basis for future reforestation efforts in China.


Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 594
Author(s):  
Blanca Gallego-Tévar ◽  
Brenda J. Grewell ◽  
Rebecca E. Drenovsky ◽  
Jesús M. Castillo

Hybridization might promote offspring fitness via a greater tolerance to environmental stressors due to heterosis and higher levels of phenotypic plasticity. Thus, analyzing the phenotypic expression of hybrids provides an opportunity to elucidate further plant responses to environmental stress. In the case of coastal salt marshes, sea level rise subjects hybrids, and their parents, to longer tidal submergence and higher salinity. We analyzed the phenotypic expression patterns in the hybrid Spartina densiflora x foliosa relative to its parental species, native S. foliosa, and invasive S. densiflora, from the San Francisco Estuary when exposed to contrasting salinities and inundations in a mesocosm experiment. 37% of the recorded traits displayed no variability among parents and hybrids, 3% showed an additive inheritance, 37% showed mid-parent heterosis, 18% showed best-parent heterosis, and 5% presented worst-parent heterosis. Transgressivity, rather than phenotypic plasticity, in key functional traits of the hybrid, such as tiller height, conveyed greater stress tolerance to the hybrid when compared to the tolerance of its parents. As parental trait variability increased, phenotypic transgressivity of the hybrid increased and it was more important in response to inundation than salinity. Increases in salinity and inundation associated with sea level rise will amplify the superiority of the hybrid over its parental species. These results provide evidence of transgressive traits as an underlying source of adaptive variation that can facilitate plant invasions. The adaptive evolutionary process of hybridization is thought to support an increased invasiveness of plant species and their rapid evolution.


2016 ◽  
Vol 31 (10) ◽  
pp. 803-813 ◽  
Author(s):  
Martin M. Turcotte ◽  
Jonathan M. Levine

Sign in / Sign up

Export Citation Format

Share Document