scholarly journals Spatial ultrasound modulation by digitally controlling microbubble arrays

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhichao Ma ◽  
Kai Melde ◽  
Athanasios G. Athanassiadis ◽  
Michael Schau ◽  
Harald Richter ◽  
...  

Abstract Acoustic waves, capable of transmitting through optically opaque objects, have been widely used in biomedical imaging, industrial sensing and particle manipulation. High-fidelity wave front shaping is essential to further improve performance in these applications. An acoustic analog to the successful spatial light modulator (SLM) in optics would be highly desirable. To date there have been no techniques shown that provide effective and dynamic modulation of a sound wave and which also support scale-up to a high number of individually addressable pixels. In the present study, we introduce a dynamic spatial ultrasound modulator (SUM), which dynamically reshapes incident plane waves into complex acoustic images. Its transmission function is set with a digitally generated pattern of microbubbles controlled by a complementary metal–oxide–semiconductor (CMOS) chip, which results in a binary amplitude acoustic hologram. We employ this device to project sequentially changing acoustic images and demonstrate the first dynamic parallel assembly of microparticles using a SUM.

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 804
Author(s):  
Gibeom Shin ◽  
Kyunghwan Kim ◽  
Kangseop Lee ◽  
Hyun-Hak Jeong ◽  
Ho-Jin Song

This paper presents a variable-gain amplifier (VGA) in the 68–78 GHz range. To reduce DC power consumption, the drain voltage was set to 0.5 V with competitive performance in the gain and the noise figure. High-Q shunt capacitors were employed at the gate terminal of the core transistors to move input matching points for easy matching with a compact transformer. The four stages amplifier fabricated in 40-nm bulk complementary metal oxide semiconductor (CMOS) showed a peak gain of 24.5 dB at 71.3 GHz and 3‑dB bandwidth of more than 10 GHz in 68–78 GHz range with approximately 4.8-mW power consumption per stage. Gate-bias control of the second stage in which feedback capacitances were neutralized with cross-coupled capacitors allowed us to vary the gain by around 21 dB in the operating frequency band. The noise figure was estimated to be better than 5.9 dB in the operating frequency band from the full electromagnetic (EM) simulation.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Aryan Afzalian

AbstractUsing accurate dissipative DFT-NEGF atomistic-simulation techniques within the Wannier-Function formalism, we give a fresh look at the possibility of sub-10-nm scaling for high-performance complementary metal oxide semiconductor (CMOS) applications. We show that a combination of good electrostatic control together with high mobility is paramount to meet the stringent roadmap targets. Such requirements typically play against each other at sub-10-nm gate length for MOS transistors made of conventional semiconductor materials like Si, Ge, or III–V and dimensional scaling is expected to end ~12 nm gate-length (pitch of 40 nm). We demonstrate that using alternative 2D channel materials, such as the less-explored HfS2 or ZrS2, high-drive current down to ~6 nm is, however, achievable. We also propose a dynamically doped field-effect transistor concept, that scales better than its MOSFET counterpart. Used in combination with a high-mobility material such as HfS2, it allows for keeping the stringent high-performance CMOS on current and competitive energy-delay performance, when scaling down to virtually 0 nm gate length using a single-gate architecture and an ultra-compact design (pitch of 22 nm). The dynamically doped field-effect transistor further addresses the grand-challenge of doping in ultra-scaled devices and 2D materials in particular.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 238
Author(s):  
Jakub Šalplachta ◽  
Tomáš Zikmund ◽  
Marek Zemek ◽  
Adam Břínek ◽  
Yoshihiro Takeda ◽  
...  

In this article, we introduce a new ring artifacts reduction procedure that combines several ideas from existing methods into one complex and robust approach with a goal to overcome their individual weaknesses and limitations. The procedure differentiates two types of ring artifacts according to their cause and character in computed tomography (CT) data. Each type is then addressed separately in the sinogram domain. The novel iterative schemes based on relative total variations (RTV) were integrated to detect the artifacts. The correction process uses the image inpainting, and the intensity deviations smoothing method. The procedure was implemented in scope of lab-based X-ray nano CT with detection systems based on charge-coupled device (CCD) and scientific complementary metal–oxide–semiconductor (sCMOS) technologies. The procedure was then further tested and optimized on the simulated data and the real CT data of selected samples with different compositions. The performance of the procedure was quantitatively evaluated in terms of the artifacts’ detection accuracy, the comparison with existing methods, and the ability to preserve spatial resolution. The results show a high efficiency of ring removal and the preservation of the original sample’s structure.


2021 ◽  
Vol 50 (16) ◽  
pp. 5540-5551
Author(s):  
Almudena Notario-Estévez ◽  
Xavier López ◽  
Coen de Graaf

This computational study presents the molecular conduction properties of polyoxovanadates V6O19 (Lindqvist-type) and V18O42, as possible successors of the materials currently in use in complementary metal–oxide semiconductor (CMOS) technology.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1272
Author(s):  
Zhihua Fan ◽  
Qinling Deng ◽  
Xiaoyu Ma ◽  
Shaolin Zhou

In recent decades, metasurfaces have emerged as an exotic and appealing group of nanophotonic devices for versatile wave regulation with deep subwavelength thickness facilitating compact integration. However, the ability to dynamically control the wave–matter interaction with external stimulus is highly desirable especially in such scenarios as integrated photonics and optoelectronics, since their performance in amplitude and phase control settle down once manufactured. Currently, available routes to construct active photonic devices include micro-electromechanical system (MEMS), semiconductors, liquid crystal, and phase change materials (PCMs)-integrated hybrid devices, etc. For the sake of compact integration and good compatibility with the mainstream complementary metal oxide semiconductor (CMOS) process for nanofabrication and device integration, the PCMs-based scheme stands out as a viable and promising candidate. Therefore, this review focuses on recent progresses on phase change metasurfaces with dynamic wave control (amplitude and phase or wavefront), and especially outlines those with continuous or quasi-continuous atoms in favor of optoelectronic integration.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 647
Author(s):  
J Lakshmi Prasanna ◽  
V Sahiti ◽  
E Raghuveera ◽  
M Ravi Kumar

A 128-Bit Digital Comparator is designed with Digital Complementary Metal Oxide Semiconductor (CMOS) logic, with the use of Parallel Prefix Tree Structure [1] technique. The comparison is performed on Most Significant Bit (MSB) to the Least Significant Bit (LSB). The comparison for the lower order bits carried out only when the MSBs are equal. This technique results in Optimized Power consumption and improved speed of operation. To make the circuit regular, the design is made using only CMOS logic gates. Transmission gates were used in the existing design and are replaced with the simple AND gates. This 128-Bit comparator is designed using Cadence TSMC 0.18µm technology and optimized the Power dissipation to 0.28mW and with a Delay of 0.87μs. 


2020 ◽  
Vol 1 (9) ◽  
pp. 3200-3207
Author(s):  
Stephan Steinhauer ◽  
Eva Lackner ◽  
Florentyna Sosada-Ludwikowska ◽  
Vidyadhar Singh ◽  
Johanna Krainer ◽  
...  

SnO2-based chemoresistive sensors integrated in complementary metal-oxide-semiconductor technology were functionalized with ultrasmall Pt nanoparticles, resulting in carbon monoxide sensing properties with minimized humidity interference.


Sign in / Sign up

Export Citation Format

Share Document