scholarly journals p53 dynamics vary between tissues and are linked with radiation sensitivity

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jacob Stewart-Ornstein ◽  
Yoshiko Iwamoto ◽  
Miles A. Miller ◽  
Mark A. Prytyskach ◽  
Stephane Ferretti ◽  
...  

AbstractRadiation sensitivity varies greatly between tissues. The transcription factor p53 mediates the response to radiation; however, the abundance of p53 protein does not correlate well with the extent of radiosensitivity across tissues. Given recent studies showing that the temporal dynamics of p53 influence the fate of cultured cells in response to irradiation, we set out to determine the dynamic behavior of p53 and its impact on radiation sensitivity in vivo. We find that radiosensitive tissues show prolonged p53 signaling after radiation, while more resistant tissues show transient p53 activation. Sustaining p53 using a small molecule (NMI801) that inhibits Mdm2, a negative regulator of p53, reduced viability in cell culture and suppressed tumor growth. Our work proposes a mechanism for the control of radiation sensitivity and suggests tools to alter the dynamics of p53 to enhance tumor clearance. Similar approaches can be used to enhance killing of cancer cells or reduce toxicity in normal tissues following genotoxic therapies.

2003 ◽  
Vol 23 (2) ◽  
pp. 462-472 ◽  
Author(s):  
Susan M. Mendrysa ◽  
Matthew K. McElwee ◽  
Jennifer Michalowski ◽  
Kathleen A. O'Leary ◽  
Karen M. Young ◽  
...  

ABSTRACT The function of the p53 tumor suppressor protein must be highly regulated because p53 can cause cell death and prevent tumorigenesis. In cultured cells, the p90MDM2 protein blocks the transcriptional activation domain of p53 and also stimulates the degradation of p53. Here we provide the first conclusive demonstration that p90MDM2 constitutively regulates p53 activity in homeostatic tissues. Mice with a hypomorphic allele of mdm2 revealed a heretofore unknown role for mdm2 in lymphopoiesis and epithelial cell survival. Phenotypic analyses revealed that both the transcriptional activation and apoptotic functions of p53 were increased in these mice. However, the level of p53 protein was not coordinately increased, suggesting that p90MDM2 can inhibit the transcriptional activation and apoptotic functions of p53 in a manner independent of degradation. Cre-mediated deletion of mdm2 caused a greater accumulation of p53, demonstrating that p90MDM2 constitutively regulates both the activity and the level of p53 in homeostatic tissues. The observation that only a subset of tissues with activated p53 underwent apoptosis indicates that factors other than p90MDM2 determine the physiological consequences of p53 activation. Furthermore, reduction of mdm2 in vivo resulted in radiosensitivity, highlighting the importance of mdm2 as a potential target for adjuvant cancer therapies.


Blood ◽  
2005 ◽  
Vol 106 (9) ◽  
pp. 3150-3159 ◽  
Author(s):  
Kensuke Kojima ◽  
Marina Konopleva ◽  
Ismael J. Samudio ◽  
Masato Shikami ◽  
Maria Cabreira-Hansen ◽  
...  

AbstractAlthough TP53 mutations are rare in acute myeloid leukemia (AML), inactivation of wild-type p53 protein frequently occurs through overexpression of its negative regulator MDM2 (murine double minute 2). Recently, small-molecule antagonists of MDM2, Nutlins, have been developed that inhibit the p53-MDM2 interaction and activate p53 signaling. Here, we study the effects of p53 activation by Nutlin-3 in AML cells. Treatment with MDM2 inhibitor triggered several molecular events consistent with induction of apoptosis: loss of mitochondrial membrane potential, caspase activation, phosphatidylserine externalization, and DNA fragmentation. There was a positive correlation in primary AML samples with wild-type p53 between baseline MDM2 protein levels and apoptosis induced by MDM2 inhibition. No induction of apoptosis was observed in AML samples harboring mutant p53. Colony formation of AML progenitors was inhibited in a dose-dependent fashion, whereas normal CD34+ progenitor cells were less affected. Mechanistic studies suggested that Nutlin-induced apoptosis was mediated by both transcriptional activation of proapoptotic Bcl-2 family proteins, and transcription-independent mitochondrial permeabilization resulting from mitochondrial p53 translocation. MDM2 inhibition synergistically enhanced cytotoxicity of cytosine arabinoside and doxorubicin in AML blasts but not in normal hematopoietic progenitor cells. p53 activation by targeting the p53-MDM2 interaction might offer a novel therapeutic strategy for AML that retain wild-type p53.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3876
Author(s):  
Chiao-En Wu ◽  
Chen-Yang Huang ◽  
Chiao-Ping Chen ◽  
Yi-Ru Pan ◽  
John Wen-Cheng Chang ◽  
...  

Background: Intrahepatic cholangiocarcinoma (iCCA) is an adenocarcinoma arising from the intrahepatic bile duct. It is the second most common primary liver cancer and has a poor prognosis. Activation of p53 by targeting its negative regulators, MDM2 and WIP1, is a potential therapy for wild-type p53 cancers, but few reports for iCCA or liver adenocarcinoma exist. Methods: Both RBE and SK-Hep-1 liver adenocarcinoma cell lines were treated with the HDM201 (Siremadlin) MDM2-p53 binding antagonist alone or in combination with the GSK2830371 WIP1 phosphatase inhibitor. Cell proliferation, clonogenicity, protein and mRNA expression, cell cycle distribution, and RNA sequencing were performed to investigate the effect and mechanism of this combination. Results: GSK2830371 alone demonstrated minimal activity on proliferation and colony formation, but potentiated growth inhibition (two-fold decrease in GI50) and cytotoxicity (four-fold decrease in IC50) by HDM201 on RBE and SK-Hep-1 cells. HDM201 increased p53 protein expression, leading to transactivation of downstream targets (p21 and MDM2). Combination with GSK2830371 increased p53 phosphorylation, resulting in an increase in both p53 accumulation and p53-dependent trans-activation. G2/M arrest was observed by flow cytometry after this treatment combination. RNA sequencing identified 21 significantly up-regulated genes and five downregulated genes following p53 reactivation by HDM201 in combination with GSK2830371 at 6 h and 24 h time points compared with untreated controls. These genes were predominantly known transcriptional targets regulated by the p53 signaling pathway, indicating enhanced p53 activation as the predominant effect of this combination. Conclusion: The current study demonstrated that GSK2830371 enhanced the p53-dependent antiproliferative and cytotoxic effect of HDM201 on RBE and SK-Hep-1 cells, providing a novel strategy for potentiating the efficacy of targeting the p53 pathway in iCCA.


2021 ◽  
Vol 22 (7) ◽  
pp. 3548
Author(s):  
Kenji Watanabe ◽  
Shuichi Shibuya ◽  
Yusuke Ozawa ◽  
Toshihiko Toda ◽  
Takahiko Shimizu

Intracellular superoxide dismutases (SODs) maintain tissue homeostasis via superoxide metabolism. We previously reported that intracellular reactive oxygen species (ROS), including superoxide accumulation caused by cytoplasmic SOD (SOD1) or mitochondrial SOD (SOD2) insufficiency, induced p53 activation in cells. SOD1 loss also induced several age-related pathological changes associated with increased oxidative molecules in mice. To evaluate the contribution of p53 activation for SOD1 knockout (KO) (Sod1−/−) mice, we generated SOD1 and p53 KO (double-knockout (DKO)) mice. DKO fibroblasts showed increased cell viability with decreased apoptosis compared with Sod1−/− fibroblasts. In vivo experiments revealed that p53 insufficiency was not a great contributor to aging-like tissue changes but accelerated tumorigenesis in Sod1−/− mice. Furthermore, p53 loss failed to improve dilated cardiomyopathy or the survival in heart-specific SOD2 conditional KO mice. These data indicated that p53 regulated ROS-mediated apoptotic cell death and tumorigenesis but not ROS-mediated tissue degeneration in SOD-deficient models.


2017 ◽  
Vol 44 (1) ◽  
pp. 255-266 ◽  
Author(s):  
Jinjin Liu ◽  
Jun Rao ◽  
Xuming Lou ◽  
Jian Zhai ◽  
Zhenhua Ni ◽  
...  

Background/Aims: The tripartite motif containing (TRIM) family plays crucial roles in tumor development and progression. However, little is known about the function and mechanism of TRIM11 in hepatocellular carcinoma (HCC). Methods: The expression levels of TRIM11 were examined by real-time PCR, Western blot and Immunohistochemical (IHC) staining. TRIM11 knockdown cells were produced by lentivirus infection, and functional assays, such as MTT, colony formation assay, migration and invasion assays and a xenograft tumor model were used to investigate the role of TRIM11 in HCC. We also determined the effect of TRIM11 on p53 signaling and its downstream molecules. Results: We found that TRIM11 mRNA and protein levels were significantly increased in HCC tissues as compared with normal tissues; increased levels correlated with poor patient survival. By loss- and gain-of-function investigations, knockdown of TRIM11 suppressed cell proliferation, migration, invasion in vitro and tumor growth in vivo. Moreover, TRIM11 negatively regulated p53 expression. Knockdown of p53 abrogated the in vitro and in vivo biological functions of TRIM11 shRNA in HCC cells. Conclusions: These data show that TRIM11 exerts its oncogenic effect in HCC by downregulating p53 both in vitro and in vivo. Our data provide new insights into the pathogenesis of HCC and indicate that TRIM11 may serve as a new therapeutic target for HCC treatment.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4879-4879 ◽  
Author(s):  
Hai Wang ◽  
Chao Xie ◽  
Shiwu Li ◽  
Eva V. George ◽  
Westley H. Reeves ◽  
...  

Abstract A consistent feature of over 100 reported cases of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is their complex cytogenetic abnormalities, suggesting that genomic instability may drive lymphomagenesis and/or tumor progression. Loss of heterozygosity(LOH) of the TP53 tumor suppressor gene locus on the short arm of chromosome 17 (17p13.1) is a frequent finding. Human p53 plays an important role in cell cycle arrest, DNA repair, and apoptosis and it maintains genome stability by preventing mutations. Recently, three T cell breast lymphoma (TLBR) cell lines were derived from patients’ BIA-ALCL primary tumor biopsy specimens. These cell lines are IL-2 dependent, ALK-negative, CD30+activated cytotoxic T cells closely resembling the original tumor cells. Thus, the cell lines may serve as an important tool for studying this newly recognized disease entity. Because of its rarity, the clinical pathologic features, tumor cell biology, and genetics of BIA-ALCL have yet to be fully defined. Here we tested the hypothesis that the p53 signaling pathway is defective in TLBR cells. We initially examined TP53 transcript expression among the cell lines. By qRT-PCR, p53 transcripts were detected in all three lines, with the highest level in TLBR-2. Next we examined p53 protein expression and p53 activation in response to ultraviolet (UV) or gamma irradiation. By Western blotting, all TLBR cell lines expressed much lower levels of p53 protein following UV irradiation (400 J/m2) than Karpas (ALK+ ALCL) cells and failed to show ATM/ATR-induced phosphorylation of p53 on serine 15, an early indicator of p53 activation. Genetic defects (deletion, mutation) of the p53 coding sequence were not found by Sanger sequencing. Interestingly, a polymorphism at p53 codon 72 (Arg72Pro), a normal variant associated with increased susceptibility to breast cancer, was detected in TLBR-1 and -3 (derived from indolent BIA-ALCL), but not in the aggressive BIA-ALCL line TLBR-2. Thus, TLBR cells exhibit defective regulation of the p53 pathway in response to DNA damage, suggesting that their ability to sense DNA damage or the regulation of p53 stability may be impaired. We next examined the DNA damage sensing pathway upstream of p53 in the presence and absence of the DNA demethylating agent 5-aza-2'-deoxycytidine (AZA, 10µM for 48hrs). In all TLBR lines, ATM and ATR transcripts were expressed at much lower levels (qRT-PCR) than normal, and their expression was not significantly affected by AZA. However, compared with human T cells, CHK2 (phosphorylate P53 at Ser20) transcripts were very low in TLBR-1 and -2, but not in TLBR-3 cells. CHK2 and p21 (the main p53 target gene) transcripts after AZA were greatly increased in TLBR-2, mildly elevated in TLBR-3, and unchanged in TLBR-1 cells, suggesting that DNA methylation of the CHK2 and p21 genes may partly explain the defective p53 signaling in TLBR-2 cells. This was confirmed by detecting of CHK2 phorphrylation only in TLBR-3 cells. Mdm2, a major negative regulator of p53 protein stability, was either normal or low (qRT-PCR), and was unaffected by AZA. However, immunobloting with Mdm2 antibodies revealed increased levels of two isoforms following UV of TLBR-1 and -2, but only the small isoform was expressed in TLBR-3 cells and there was little response to UV treatment. Treatment of TLBR cells with 5 µM Nutlin-3 (Mdm2 antagonist, p53 activator, and apoptosis inducer) inhibited cell growth by 40% at day 5 (MTT assay). We conclude that these three BIA-ALCL derived cell lines share dysregulation of the p53 signaling pathway, which may contribute to the genomic instability characteristic of these BIA-ALCL cases. First two authors have equally contributed to this abstract. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 9 (10) ◽  
pp. 2095 ◽  
Author(s):  
Pierre Wehler ◽  
Barbara Di Ventura

The transcription factor p53 is a stress sensor that turns specific sets of genes on to allow the cell to respond to the stress depending on its severity and type. p53 is classified as tumor suppressor because its function is to maintain genome integrity promoting cell cycle arrest, apoptosis, or senescence to avoid proliferation of cells with damaged DNA. While in many human cancers the p53 gene is itself mutated, there are some in which the dysfunction of the p53 pathway is caused by the overexpression of negative regulators of p53, such as Mdm2, that keep it at low levels at all times. Here we develop an optogenetic approach to control endogenous p53 levels with blue light. Specifically, we control the nuclear localization of the Mmd2-binding PMI peptide using the light-inducible export system LEXY. In the dark, the PMI-LEXY fusion is nuclear and binds to Mdm2, consenting to p53 to accumulate and transcribe the target gene p21. Blue light exposure leads to the export of the PMI-LEXY fusion into the cytosol, thereby Mdm2 is able to degrade p53 as in the absence of the peptide. This approach may be useful to study the effect of localized p53 activation within a tissue or organ.


2021 ◽  
Vol 14 (4) ◽  
pp. 358
Author(s):  
Satish K. Chitneni ◽  
Zhengyuan Zhou ◽  
Brian E. Watts ◽  
Michael R. Zalutsky

Murine double minute 2 (MDM2), a negative regulator of the p53 tumor suppressor protein, is overexpressed in several human cancers. Herein we investigate the feasibility of developing 18F-labeled compounds based on the small molecule inhibitor SP-141 for imaging tumor MDM2 expression levels with positron emission tomography (PET). Three nonradioactive fluorinated SP-141 analogues, 1–3, were synthesized, and their binding to the MDM2 protein was analyzed by surface plasmon resonance (SPR). One of these, a fluoroethoxy analogue, was labeled with fluorine-18 (18F) using 18F-fluorethyl bromide to provide [18F]1 and evaluated in vitro and in vivo. SPR analysis confirmed the binding of the fluorinated analogues to MDM2 at 1.25–20 µM concentrations. Cell uptake studies revealed high uptake (67.5–71.4 %/mg protein) and specificity of [18F]1 in MCF7 and HepG2 cells. The uptake of [18F]1 in these cells could be modulated using 100 µM SP-141, potentially reflecting changes in MDM2 expression because of p53 activation by SP-141. [18F]1 exhibited stable uptake and retention in HepG2 tumor xenografts (~3 %ID/g) in vivo, but poor clearance from blood and other normal tissues, yielding low tumor-to-background ratios (< 2) at 2 h post injection. Our results suggest that [18F]1 has suboptimal characteristics for in vivo evaluation as a PET tracer for MDM2, but warrant radiolabeling and assessment of the other fluorinated analogues synthesized in this work, 2 and 3, and potentially other molecular scaffolds for developing MDM2 targeted radiotracers.


2009 ◽  
Vol 29 (17) ◽  
pp. 4841-4851 ◽  
Author(s):  
Magdalena Sarasin-Filipowicz ◽  
Xueya Wang ◽  
Ming Yan ◽  
Francois H. T. Duong ◽  
Valeria Poli ◽  
...  

ABSTRACT Recombinant alpha interferon (IFN-α) is used for the treatment of viral hepatitis and some forms of cancer. During these therapies IFN-α is injected once daily or every second day for several months. Recently, the long-acting pegylated IFN-α (pegIFN-α) has replaced standard IFN-α in therapies of chronic hepatitis C because it is more effective, supposedly by inducing a long-lasting activation of IFN signaling pathways. IFN signaling in cultured cells, however, becomes refractory within hours, and little is known about the pharmacodynamic effects of continuously high IFN-α serum concentrations. To investigate the behavior of the IFN system in vivo, we repeatedly injected mice with IFN-α and analyzed its effects in the liver. Within hours after the first injection, IFN-α signaling became refractory to further stimulation. The negative regulator SOCS1 was rapidly upregulated and likely responsible for early termination of IFN-α signaling. For long-lasting refractoriness, neither SOCS1 nor SOCS3 were instrumental. Instead, we identified the inhibitor USP18/UBP43 as the key mediator. Our results indicate that the current therapeutic practice using long-lasting pegIFN-α is not well adapted to the intrinsic properties of the IFN system. Targeting USP18 expression may allow to exploit the full therapeutic potential of recombinant IFN-α.


Sign in / Sign up

Export Citation Format

Share Document