scholarly journals Ecology and molecular targets of hypermutation in the global microbiome

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Simon Roux ◽  
Blair G. Paul ◽  
Sarah C. Bagby ◽  
Stephen Nayfach ◽  
Michelle A. Allen ◽  
...  

AbstractChanges in the sequence of an organism’s genome, i.e., mutations, are the raw material of evolution. The frequency and location of mutations can be constrained by specific molecular mechanisms, such as diversity-generating retroelements (DGRs). DGRs have been characterized from cultivated bacteria and bacteriophages, and perform error-prone reverse transcription leading to mutations being introduced in specific target genes. DGR loci were also identified in several metagenomes, but the ecological roles and evolutionary drivers of these DGRs remain poorly understood. Here, we analyze a dataset of >30,000 DGRs from public metagenomes, establish six major lineages of DGRs including three primarily encoded by phages and seemingly used to diversify host attachment proteins, and demonstrate that DGRs are broadly active and responsible for >10% of all amino acid changes in some organisms. Overall, these results highlight the constraints under which DGRs evolve, and elucidate several distinct roles these elements play in natural communities.

Author(s):  
Simon Roux ◽  
Blair G. Paul ◽  
Sarah C. Bagby ◽  
Michelle A. Allen ◽  
Graeme Attwood ◽  
...  

AbstractChanges in the sequence of an organism’s genome, i.e. mutations, are the raw material of evolution1. The frequency and location of mutations can be constrained by specific molecular mechanisms, such as Diversity-generating retroelements (DGRs)2–4. DGRs introduce mutations in specific target genes, and were characterized from several cultivated bacteria and bacteriophages2. Whilst a larger diversity of DGR loci has been identified in genomic data from environmental samples, i.e. metagenomes, the ecological role of these DGRs and their associated evolutionary drivers remain poorly understood5–7. Here we built and analyzed an extensive dataset of >30,000 metagenome-derived DGRs, and determine that DGRs have a single evolutionary origin and a universal bias towards adenine mutations. We further identified six major lineages of DGRs, each associated with a specific ecological niche defined as a genome type, i.e. whether the DGR is encoded on a viral or cellular genome, a limited set of taxa and environments, and a distinct type of target. Finally, we leverage read mapping and metagenomic time series to demonstrate that DGRs are consistently and broadly active, and responsible for >10% of all amino acid changes in some organisms at a conservative estimate. Overall, these results highlight the strong constraints under which DGRs diversify and expand, and elucidate several distinct roles these elements play in natural communities and in shaping microbial community structure and function in our environment.


2017 ◽  
Author(s):  
Florian Rümpler ◽  
Günter Theißen ◽  
Rainer Melzer

ABSTRACTThe development of angiosperm flowers is regulated by homeotic MIKC-type MADS-domain transcription factors that activate or repress target genes via the formation of DNA-bound, organ specific tetrameric complexes. The protein-protein interaction (PPI) capabilities differ considerably between different MIKC-type proteins. The floral homeotic protein SEPALLATA3 (SEP3) acts as a hub that incorporates numerous other MADS-domain proteins into tetrameric complexes that would otherwise not form. However, the molecular mechanisms that underlie these promiscuous interactions remain largely unknown. In this study we created a collection of amino acid substitution mutants of SEP3 to quantify the contribution of individual residues on protein tetramerization during DNA-binding, employing methods of molecular biophysics. We show that leucine residues at certain key positions form a leucine zipper structure that is essential for tetramerization of SEP3, whereas the introduction of physicochemically very similar residues at respective sites impedes the formation of DNA-bound tetramers. Comprehensive molecular evolutionary analyses of MADS-domain proteins from a diverse set of flowering plants revealed exceedingly high conservation of the identified leucine residues within SEP3-subfamily proteins throughout angiosperm evolution. In contrast, MADS-domain proteins that are unable to tetramerize among themselves exhibit preferences for other amino acids at homologous sites. Our findings indicate that the subfamily-specific conservation of amino acid residues at just a few key positions account for subfamily-specific interaction capabilities of MADS-domain transcription factors and shaped the present-day structure of the PPI network controlling flower development.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yujie Zhang ◽  
Xiaolin Zhang ◽  
Xi Zhang ◽  
Yi Cai ◽  
Minghui Cheng ◽  
...  

Background. Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated with high rates of mortality and morbidity. The traditional Chinese medicine Wenxin Keli (WXKL) can effectively improve clinical symptoms and is safe for the treatment of AF. However, the active substances in WXKL and the molecular mechanisms underlying its effects on AF remain unclear. In this study, the bioactive compounds in WXKL, as well as their molecular targets and associated pathways, were evaluated by systems pharmacology. Materials and Methods. Chemical constituents and potential targets of WXKL were obtained via the Traditional Chinese Medicine Systems Pharmacology (TCMSP). The TTD, DrugBank, DisGeNET, and GeneCards databases were used to collect AF-related target genes. Based on common targets related to both AF and WXKL, a protein interaction network was generated using the STRING database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGGs) pathway enrichment analyses were performed. Network diagrams of the active component-target and protein-protein interactions (PPIs) were constructed using Cytoscape. Results. A total of 30 active ingredients in WXKL and 219 putative target genes were screened, including 83 genes identified as therapeutic targets in AF; these overlapping genes were considered candidate targets for subsequent analyses. The effect of treating AF was mainly correlated with the regulation of target proteins, such as IL-6, TNF, AKT1, VEGFA, CXCL8, TP53, CCL2, MMP9, CASP3, and NOS3. GO and KEGG analyses revealed that these targets are associated with the inflammatory response, oxidative stress reaction, immune regulation, cardiac energy metabolism, serotonergic synapse, and other pathways. Conclusions. This study demonstrated the multicomponent, multitarget, and multichannel characteristics of WXKL, providing a basis for further studies of the mechanism underlying the beneficial effects of WXKL in AF.


2020 ◽  
Vol 134 (17) ◽  
pp. 2243-2262
Author(s):  
Danlin Liu ◽  
Gavin Richardson ◽  
Fehmi M. Benli ◽  
Catherine Park ◽  
João V. de Souza ◽  
...  

Abstract In the elderly population, pathological inflammation has been associated with ageing-associated diseases. The term ‘inflammageing’, which was used for the first time by Franceschi and co-workers in 2000, is associated with the chronic, low-grade, subclinical inflammatory processes coupled to biological ageing. The source of these inflammatory processes is debated. The senescence-associated secretory phenotype (SASP) has been proposed as the main origin of inflammageing. The SASP is characterised by the release of inflammatory cytokines, elevated activation of the NLRP3 inflammasome, altered regulation of acetylcholine (ACh) nicotinic receptors, and abnormal NAD+ metabolism. Therefore, SASP may be ‘druggable’ by small molecule therapeutics targeting those emerging molecular targets. It has been shown that inflammageing is a hallmark of various cardiovascular diseases, including atherosclerosis, hypertension, and adverse cardiac remodelling. Therefore, the pathomechanism involving SASP activation via the NLRP3 inflammasome; modulation of NLRP3 via α7 nicotinic ACh receptors; and modulation by senolytics targeting other proteins have gained a lot of interest within cardiovascular research and drug development communities. In this review, which offers a unique view from both clinical and preclinical target-based drug discovery perspectives, we have focused on cardiovascular inflammageing and its molecular mechanisms. We have outlined the mechanistic links between inflammageing, SASP, interleukin (IL)-1β, NLRP3 inflammasome, nicotinic ACh receptors, and molecular targets of senolytic drugs in the context of cardiovascular diseases. We have addressed the ‘druggability’ of NLRP3 and nicotinic α7 receptors by small molecules, as these proteins represent novel and exciting targets for therapeutic interventions targeting inflammageing in the cardiovascular system and beyond.


2020 ◽  
Vol 14 ◽  
Author(s):  
Abhishek Kumar ◽  
Neeraj Masand ◽  
Vaishali M. Patil

Abstract: Breast cancer is the most common and highly heterogeneous neoplastic disease comprised of several subtypes with distinct molecular etiology and clinical behaviours. The mortality observed over the past few decades and the failure in eradicating the disease is due to the lack of specific etiology, molecular mechanisms involved in initiation and progression of breast cancer. Understanding of the molecular classes of breast cancer may also lead to new biological insights and eventually to better therapies. The promising therapeutic targets and novel anti-cancer approaches emerging from these molecular targets that could be applied clinically in the near future are being highlighted. In addition, this review discusses some of the details of current molecular classification and available chemotherapeutics


Author(s):  
Robert Laumbach ◽  
Michael Gochfeld

This chapter describes the basic principles of toxicology and their application to occupational and environmental health. Topics covered include pathways that toxic substances may take from sources in the environment to molecular targets in the cells of the body where toxic effects occur. These pathways include routes of exposure, absorption into the body, distribution to organs and tissues, metabolism, storage, and excretion. The various types of toxicological endpoints are discussed, along with the concepts of dose-response relationships, threshold doses, and the basis of interindividual differences and interspecies differences in response to exposure to toxic substances. The diversity of cellular and molecular mechanisms of toxicity, including enzyme induction and inhibition, oxidative stress, mutagenesis, carcinogenesis, and teratogenesis, are discussed and the chapter concludes with examples of practical applications in clinical evaluation and in toxicity testing.


2020 ◽  
Vol 31 (4) ◽  
pp. 716-730 ◽  
Author(s):  
Marc Johnsen ◽  
Torsten Kubacki ◽  
Assa Yeroslaviz ◽  
Martin Richard Späth ◽  
Jannis Mörsdorf ◽  
...  

BackgroundAlthough AKI lacks effective therapeutic approaches, preventive strategies using preconditioning protocols, including caloric restriction and hypoxic preconditioning, have been shown to prevent injury in animal models. A better understanding of the molecular mechanisms that underlie the enhanced resistance to AKI conferred by such approaches is needed to facilitate clinical use. We hypothesized that these preconditioning strategies use similar pathways to augment cellular stress resistance.MethodsTo identify genes and pathways shared by caloric restriction and hypoxic preconditioning, we used RNA-sequencing transcriptome profiling to compare the transcriptional response with both modes of preconditioning in mice before and after renal ischemia-reperfusion injury.ResultsThe gene expression signatures induced by both preconditioning strategies involve distinct common genes and pathways that overlap significantly with the transcriptional changes observed after ischemia-reperfusion injury. These changes primarily affect oxidation-reduction processes and have a major effect on mitochondrial processes. We found that 16 of the genes differentially regulated by both modes of preconditioning were strongly correlated with clinical outcome; most of these genes had not previously been directly linked to AKI.ConclusionsThis comparative analysis of the gene expression signatures in preconditioning strategies shows overlapping patterns in caloric restriction and hypoxic preconditioning, pointing toward common molecular mechanisms. Our analysis identified a limited set of target genes not previously known to be associated with AKI; further study of their potential to provide the basis for novel preventive strategies is warranted. To allow for optimal interactive usability of the data by the kidney research community, we provide an online interface for user-defined interrogation of the gene expression datasets (http://shiny.cecad.uni-koeln.de:3838/IRaP/).


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 576
Author(s):  
Yanru Fan ◽  
Wanfeng Li ◽  
Zhexin Li ◽  
Shaofei Dang ◽  
Suying Han ◽  
...  

The study of somatic embryogenesis can provide insight into early plant development. We previously obtained LaMIR166a-overexpressing embryonic cell lines of Larix kaempferi (Lamb.) Carr. To further elucidate the molecular mechanisms associated with miR166 in this species, the transcriptional profiles of wild-type (WT) and three LaMIR166a-overexpressing transgenic cell lines were subjected to RNA sequencing using the Illumina NovaSeq 6000 system. In total, 203,256 unigenes were generated using Trinity de novo assembly, and 2467 differentially expressed genes were obtained by comparing transgenic and WT lines. In addition, we analyzed the cleaved degree of LaMIR166a target genes LaHDZ31–34 in different transgenic cell lines by detecting the expression pattern of LaHdZ31–34, and their cleaved degree in transgenic cell lines was higher than that in WT. The downstream genes of LaHDZ31–34 were identified using Pearson correlation coefficients. Yeast one-hybrid and dual-luciferase report assays revealed that the transcription factors LaHDZ31–34 could bind to the promoters of LaPAP, LaPP1, LaZFP5, and LaPHO1. This is the first report of gene expression changes caused by LaMIR166a overexpression in Japanese larch. These findings lay a foundation for future studies on the regulatory mechanism of miR166.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Betty Ha ◽  
Kevin P. Larsen ◽  
Jingji Zhang ◽  
Ziao Fu ◽  
Elizabeth Montabana ◽  
...  

AbstractReverse transcription of the HIV-1 viral RNA genome (vRNA) is an integral step in virus replication. Upon viral entry, HIV-1 reverse transcriptase (RT) initiates from a host tRNALys3 primer bound to the vRNA genome and is the target of key antivirals, such as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Initiation proceeds slowly with discrete pausing events along the vRNA template. Despite prior medium-resolution structural characterization of reverse transcriptase initiation complexes (RTICs), higher-resolution structures of the RTIC are needed to understand the molecular mechanisms that underlie initiation. Here we report cryo-EM structures of the core RTIC, RTIC–nevirapine, and RTIC–efavirenz complexes at 2.8, 3.1, and 2.9 Å, respectively. In combination with biochemical studies, these data suggest a basis for rapid dissociation kinetics of RT from the vRNA–tRNALys3 initiation complex and reveal a specific structural mechanism of nucleic acid conformational stabilization during initiation. Finally, our results show that NNRTIs inhibit the RTIC and exacerbate discrete pausing during early reverse transcription.


Sign in / Sign up

Export Citation Format

Share Document