scholarly journals Transcriptome Network Analysis Identifies CXCL13-CXCR5 Signaling Modules in the Prostate Tumor Immune Microenvironment

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Adaugo Q. Ohandjo ◽  
Zongzhi Liu ◽  
Eric B. Dammer ◽  
Courtney D. Dill ◽  
Tiara L. Griffen ◽  
...  

Abstract The tumor immune microenvironment (TIME) consists of multiple cell types that contribute to the heterogeneity and complexity of prostate cancer (PCa). In this study, we sought to understand the gene-expression signature of patients with primary prostate tumors by investigating the co-expression profiles of patient samples and their corresponding clinical outcomes, in particular “disease-free months” and “disease reoccurrence”. We tested the hypothesis that the CXCL13-CXCR5 axis is co-expressed with factors supporting TIME and PCa progression. Gene expression counts, with clinical attributes from PCa patients, were acquired from TCGA. Profiles of PCa patients were used to identify key drivers that influence or regulate CXCL13-CXCR5 signaling. Weighted gene co-expression network analysis (WGCNA) was applied to identify co-expression patterns among CXCL13-CXCR5, associated genes, and key genetic drivers within the CXCL13-CXCR5 signaling pathway. The processing of downloaded data files began with quality checks using NOISeq, followed by WGCNA. Our results confirmed the quality of the TCGA transcriptome data, identified 12 co-expression networks, and demonstrated that CXCL13, CXCR5 and associated genes are members of signaling networks (modules) associated with G protein coupled receptor (GPCR) responsiveness, invasion/migration, immune checkpoint, and innate immunity. We also identified top canonical pathways and upstream regulators associated with CXCL13-CXCR5 expression and function.

Blood ◽  
2008 ◽  
Vol 111 (9) ◽  
pp. 4490-4495 ◽  
Author(s):  
Lars Bullinger ◽  
Konstanze Döhner ◽  
Raphael Kranz ◽  
Christoph Stirner ◽  
Stefan Fröhling ◽  
...  

Abstract Acute myeloid leukemia with normal karyotype (NK-AML) represents a cytogenetic grouping with intermediate prognosis but substantial molecular and clinical heterogeneity. Within this subgroup, presence of FLT3 (FMS-like tyrosine kinase 3) internal tandem duplication (ITD) mutation predicts less favorable outcome. The goal of our study was to discover gene-expression patterns correlated with FLT3-ITD mutation and to evaluate the utility of a FLT3 signature for prognostication. DNA microarrays were used to profile gene expression in a training set of 65 NK-AML cases, and supervised analysis, using the Prediction Analysis of Microarrays method, was applied to build a gene expression–based predictor of FLT3-ITD mutation status. The optimal predictor, composed of 20 genes, was then evaluated by classifying expression profiles from an independent test set of 72 NK-AML cases. The predictor exhibited modest performance (73% sensitivity; 85% specificity) in classifying FLT3-ITD status. Remarkably, however, the signature outperformed FLT3-ITD mutation status in predicting clinical outcome. The signature may better define clinically relevant FLT3 signaling and/or alternative changes that phenocopy FLT3-ITD, whereas the signature genes provide a starting point to dissect these pathways. Our findings support the potential clinical utility of a gene expression–based measure of FLT3 pathway activation in AML.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i15-i15
Author(s):  
Fenna F. Feenstra ◽  
Friso Calkoen ◽  
Johan M Kros ◽  
Lennart Kester ◽  
Mariëtte Kranendonk ◽  
...  

Abstract Background Ependymomas account for 8–10% of pediatric brain tumors, and the standard therapy of surgery and radiation has not changed for the past two decades. Characterization of the tumor immune microenvironment (TIME) is of great importance in order to find better therapies. However, the TIME of ependymomas is still not defined. In this retrospective observational study we aimed to unravel the TIME of ependymomas at mRNA and protein expression levels. Methods Ependymoma samples from two locations were selected: Posterior Fossa (PF-A, n=8), and supratentorial (ST, n=5). Targeted gene expression profile using the PanCancer immune profile panel of NanoString technology was performed. Data were analyzed using the nSolver software. In addition, 8 samples were subjected to RNA bulk sequencing, and the sequenced data were connected to the expression data of the same samples. To validate some of the findings, immunohistochemistry was performed. Results Unsupervised hierarchical clustering showed that PF-A ependymomas can be divided into two groups based on the expression of their immune-related genes. PF-A that showed high immune-expression clustered closely to the ST ependymomas. Significant expressions of genes related to “antigen-processing” and “adhesion” pathways were found in the immune-active groups. On the contrary, the PF-A that had low expressions of immune-related genes showed a high expression of BMI1 that has a prognostic and therapeutic value. Connecting gene expression to bulk sequence data validated the findings. In addition, immunohistochemical analysis confirmed that protein expression for some of the findings. Conclusion The TIME varies in ependymomas based on the location of the tumor. Moreover, the immune-related expression profiles indicated that PF-A ependymomas can be divided into two groups: immune-active and immune-not active PF-A. The prognostic and therapeutic values of the immune activity of PF-A should be further studied.


2021 ◽  
Author(s):  
Nimrod Bernat ◽  
Rianne Campbell ◽  
Hyungwoo Nam ◽  
Mahashweta Basu ◽  
Tal Odesser ◽  
...  

The ventral pallidum (VP), a major component of the basal ganglia, plays a critical role in motivational disorders. It sends projections to many different brain regions but it is not yet known whether and how these projections differ in their cellular properties, gene expression patterns, connectivity and role in reward seeking. In this study, we focus on four major outputs of the VP - to the lateral hypothalamus (LH), ventral tegmental area (VTA), mediodorsal thalamus (MDT), and lateral habenula (LHb) - and examine the differences between them in 1) baseline gene expression profiles using projection-specific RNA-sequencing; 2) physiological parameters using whole-cell patch clamp; and 3) their influence on cocaine reward using chemogenetic tools. We show that these four VP efferents differ in all three aspects and highlight specifically differences between the projections to the LH and the VTA. These two projections originate largely from separate populations of neurons, express distinct sets of genes related to neurobiological functions, and show opposite physiological and behavioral properties. Collectively, our data demonstrates for the first time that VP neurons exhibit distinct molecular and cellular profiles in a projection-specific manner, suggesting that they represent different cell types.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 654 ◽  
Author(s):  
Sushma Vishwakarma ◽  
Rishikesh Kumar Gupta ◽  
Saumya Jakati ◽  
Mudit Tyagi ◽  
Rajeev Reddy Pappuru ◽  
...  

Fibrocellular membrane or epiretinal membrane (ERM) forms on the surface of the inner limiting membrane (ILM) in the inner retina and alters the structure and function of the retina. ERM formation is frequently observed in ocular inflammatory conditions, such as proliferative diabetic retinopathy (PDR) and retinal detachment (RD). Although peeling of the ERM is used as a surgical intervention, it can inadvertently distort the retina. Our goal is to design alternative strategies to tackle ERMs. As a first step, we sought to determine the composition of the ERMs by identifying the constituent cell-types and gene expression signature in patient samples. Using ultrastructural microscopy and immunofluorescence analyses, we found activated microglia, astrocytes, and Müller glia in the ERMs from PDR and RD patients. Moreover, oxidative stress and inflammation associated gene expression was significantly higher in the RD and PDR membranes as compared to the macular hole samples, which are not associated with inflammation. We specifically detected differential expression of hypoxia inducible factor 1-α (HIF1-α), proinflammatory cytokines, and Notch, Wnt, and ERK signaling pathway-associated genes in the RD and PDR samples. Taken together, our results provide new information to potentially develop methods to tackle ERM formation.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shunqiang Nong ◽  
Xiaohao Chen ◽  
Zechen Wang ◽  
Guidan Xu ◽  
Wujun Wei ◽  
...  

Background. Increasing evidence demonstrated that long noncoding RNA (lncRNA) could affect inflammatory tumor immune microenvironment by modulating gene expression and could be used as a biomarker for HBC-related hepatocellular carcinoma (HCC) but still needs further research. The aim of the present study was to determine an lncRNA signature for the diagnosis of HBV-related HCC. Methods. HBV-related HCC expression profiles (GSE55092, GSE19665, and GSE84402) were abstracted from the GEO (Gene Expression Omnibus) data resource, and R package limma and RobustRankAggreg were employed to identify common differentially expressed genes (DEGs). Using machine learning, optimal diagnostic lncRNA molecular markers for HBV-related HCC were identified. The expression of candidate lncRNAs was cross-validated in GSE121248, and an ROC (receiver operating characteristic) curve of lncRNA biomarkers was carried out. Additionally, a coexpression network and functional annotation was built, after which a PPI (protein-protein interaction) network along with module analysis were conducted with the Cytoscape open source software. Result. A total of 38 DElncRNAs and 543 DEmRNAs were identified with a fold change larger than 2.0 and a P value < 0.05. By machine learning, AL356056.2, AL445524.1, TRIM52-AS1, AC093642.1, EHMT2-AS1, AC003991.1, AC008040.1, LINC00844, and LINC01018 were screened out as optional diagnostic lncRNA biosignatures for HBV-related HCC. The AUC (areas under the curve) of the SVM (support vector machine) model and random forest model were 0.957 and 0.904, respectively, and the specificity and sensitivity were 95.7 and 100% and 94.3 and 86.5%, respectively. The results of functional enrichment analysis showed that the integrated coexpressed DEmRNAs shared common cascades in the p53 signaling pathway, retinol metabolism, PI3K-Akt signaling cascade, and chemical carcinogenesis. The integrated DEmRNA PPI network complex was found to be comprised of 87 nodes, and two vital modules with a high degree were selected with the MCODE app. Conclusion. The present study identified nine potential diagnostic biomarkers for HBV-related HCC, all of which could potentially modulated gene expression related to inflammatory conditions in the tumor immune microenvironment. The functional annotation of the target DEmRNAs yielded novel evidence in evaluating the precise functions of lncRNA in HBV-related HCC.


2020 ◽  
Author(s):  
Chengbin Guo ◽  
Yuqin Tang ◽  
Yongqiang Zhang ◽  
Gen Li

Abstract Background: Endometrial cancer (EC) is one of the most lethal gynecological cancer in women. It is imperative to identify the potential immune microenvironment-related biomarkers associated with the prognosis for EC. Methods: RNA-seq data and related clinical information of EC patients were derived from The Cancer Genome Atlas (TCGA). The immune score of each EC sample was obtained by ESTIMATE algorithm. Weighted gene co-expression network analysis (WCGNA) was used to identify the interesting module and potential key genes concerning the immune score. Further, the expression patterns of the key genes were verified via the GEPIA database. Last, CIBERSORT was used to evaluate the relative abundances of 22 immune cell types in EC. Results: Immune scores were significantly associated with tumor grade and histology of EC, and high immune scores may exert a protective influence on the survival outcome for EC. WCGNA indicated that the black module was significantly correlated with the immune score in EC. Function analysis revealed it mainly involved in those terms related to immune regulation and inflammatory response. Moreover, 11 key genes were identified from the black module, validated by the GEPIA database, and revealed strong correlations with infiltration levels of multiple immune cell types, as was the prognosis of EC. Conclusion: In our study, 11 key genes showed abnormal expressions and strong correlations with immune cell infiltration in EC, most of which were significantly associated with the prognosis of EC. These findings made them promising therapeutic targets for the treatment of EC.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3903-3903
Author(s):  
Tetsuya Yamagata ◽  
Christophe Benoist ◽  
Diane Mathis

Abstract Innate and adaptive immunity are the two major arms of the immune system. They rely on very distinct cell-types, primarily distinguished by the source of diversity for non-self recognition, of germline or somatic origin. There exists, however, a subset of lymphocytes whose receptors require rearrangement but result in semi-invariant structures with a high degree of self-specificity. We hypothesized that these innate-like lymphocytes might share a common gene transcription signature. To test this notion, we made pair-wise comparisons of the gene-expression profiles of innate-like lymphocytes and closely paired adaptive system counterparts (NKT vs. CD4T, CD8ααT vs. CD8αβT, B1 vs. B2), and bioinformatically extracted common features and common genes distinguishing innate from adaptive cell-types. A statistically significant “innate signature” was indeed distilled, composed of a small set of genes over- and under-expressed in innate vs. adaptive lymphocytes. Particularly intriguing was the high representation of interferon-inducible GTPases crucial for resistance against intracellular pathogens, and of small G proteins involved in intracellular vacuole maturation and trafficking. Overall, this combined expression pattern can thus be designated as an “innate signature” among lymphocytes.


Author(s):  
Rossana Cuciniello ◽  
Stefania Filosa ◽  
Stefania Crispi

AbstractShort or small interfering RNAs (siRNAs) and microRNA (miRNAs) are molecules similar in size and function able to inhibit gene expression based on their complementarity with mRNA sequences, inducing the degradation of the transcript or the inhibition of their translation.siRNAs bind specifically to a single gene location by sequence complementarity and regulate gene expression by specifically targeting transcription units via posttranscriptional gene silencing. miRNAs can regulate the expression of different gene targets through their imperfect base pairing.This process - known as RNA interference (RNAi) - modulates transcription in order to maintain a correct physiological environment, playing a role in almost the totality of the cellular pathways.siRNAs have been evolutionary evolved for the protection of genome integrity in response to exogenous and invasive nucleic acids such as transgenes or transposons. Artificial siRNAs are widely used in molecular biology for transient silencing of genes of interest. This strategy allows to inhibit the expression of any target protein of known sequence and is currently used for the treatment of different human diseases including cancer.Modifications and rearrangements in gene regions encoding for miRNAs have been found in cancer cells, and specific miRNA expression profiles characterize the developmental lineage and the differentiation state of the tumor. miRNAs with different expression patterns in tumors have been reported as oncogenes (oncomirs) or tumor-suppressors (anti-oncomirs). RNA modulation has become important in cancer research not only for development of early and easy diagnosis tools but also as a promising novel therapeutic approach.Despite the emerging discoveries supporting the role of miRNAs in carcinogenesis and their and siRNAs possible use in therapy, a series of concerns regarding their development, delivery and side effects have arisen.In this review we report the biology of miRNAs and siRNAs in relation to cancer summarizing the recent methods described to use them as novel therapeutic drugs and methods to specifically deliver them to cancer cells and overcome the limitations in the use of these molecules.


2020 ◽  
Author(s):  
Peng Han ◽  
yu De Chen ◽  
Feng Yang

Abstract Background While the administration of immunotherapy can facilitate the development of durable anti-tumor immunity in certain colorectal cancer (CRC) patients.This study was therefore designed to conduct a robust analysis of the CRC immune microenvironment to identify specific genes and pathways that can be targeted in an effort to achieve more effective immunotherapy outcomes. Methods Using five Independent data sets, we analyzed expression profiles associated with 29 different immune signatures, and we used these profiles to guide the hierarchical clustering of CRC samples based on their immune microenvironmental composition. Results We were able to cluster our CRC samples based on whether they had exhibited high, medium, or low levels of infiltration by immune cell types associated with tumor clearance (Immunity_H, Immunity_M, and Immunity_L, respectively). Samples in the Immunity_H subset exhibited a “hot” immune microenvironment, with higher stromal scores, higher immune scores, and lower tumor purity. The microsatellite instability (MSI) group included the majority of the Immunity_H samples, whereas most Immunity_M and Immunity_L samples were incorporated into the microsatellite stability (MSS) .The vast majority of patients with KRAS mutations were in the Immunity_L and MSS groups, whereas the majority of patients exhibiting BRAF V600E mutations were found in the Immunity_H and MSI-H samples. TMB high samples included a majority of the Immunity_H samples and a small subset of the Immunity_M samples. Conclusions Our results identify three reproducibly validated immune subtypes of CRC tumor samples, potentially offering valuable insights that may guide the immunotherapeutic treatment of these patients.


2019 ◽  
Author(s):  
David J. Forsthoefel ◽  
Nicholas I. Cejda ◽  
Umair W. Khan ◽  
Phillip A. Newmark

AbstractOrgan regeneration requires precise coordination of new cell differentiation and remodeling of uninjured tissue to faithfully re-establish organ morphology and function. An atlas of gene expression and cell types in the uninjured state is therefore an essential pre-requisite for understanding how damage is repaired. Here, we use laser-capture microdissection (LCM) and RNA-Seq to define the transcriptome of the intestine of Schmidtea mediterranea, a planarian flatworm with exceptional regenerative capacity. Bioinformatic analysis of 1,844 intestine-enriched transcripts suggests extensive conservation of digestive physiology with other animals, including humans. Comparison of the intestinal transcriptome to purified absorptive intestinal cell (phagocyte) and published single-cell expression profiles confirms the identities of known intestinal cell types, and also identifies hundreds of additional transcripts with previously undetected intestinal enrichment. Furthermore, by assessing the expression patterns of 143 transcripts in situ, we discover unappreciated mediolateral regionalization of gene expression and cell-type diversity, especially among goblet cells. Demonstrating the utility of the intestinal transcriptome, we identify 22 intestine-enriched transcription factors, and find that several have distinct functional roles in the regeneration and maintenance of goblet cells. Furthermore, depletion of goblet cells inhibits planarian feeding and reduces viability. Altogether, our results show that LCM is a viable approach for assessing tissue-specific gene expression in planarians, and provide a new resource for further investigation of digestive tract regeneration, the physiological roles of intestinal cell types, and axial polarity.


Sign in / Sign up

Export Citation Format

Share Document