scholarly journals Adipose-derived mesenchymal stem cells regenerate radioiodine-induced salivary gland damage in a murine model

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ji Won Kim ◽  
Jeong Mi Kim ◽  
Mi Eun Choi ◽  
Seok-Ki Kim ◽  
Young-Mo Kim ◽  
...  

Abstract After radioiodine (RI) therapy, patients with thyroid cancer frequently suffer from painful salivary gland (SG) swelling, xerostomia, taste alterations, and oral infections. This study was aimed to determine whether adipose-derived mesenchymal stem cells (AdMSCs) might restore RI-induced SG dysfunction in a murine model. Forty -five mice were divided into three groups; a PBS sham group, a RI+ PBS sham group (0.01 mCi/g mouse, orally), and an RI+AdMSCs (1 × 105 cells/150 uL, intraglandular injection on experimental day 28) treated group. At 16 weeks after RI treatment, body weights, SG weight, salivary flow rates (SFRs), and salivary lag times were measured. Morphologic and histologic examinations and immunohistochemistry (IHC) were performed and the activities of amylase and EGF in saliva were also measured. Changes in salivary 99mTc pertechnetate excretion were followed by SPECT and TUNEL assays were performed. The body and SG weights were similar in the AdMSCs and sham groups. Hematoxylin and eosin staining revealed the AdMSCs group had more mucin-containing acini than the RI group. Furthermore, AdMSCs treatment resulted in tissue remodeling and elevated expressions of epithelial (AQP5) and endothelial (CD31) markers, and increased SFRs. The activities of amylase and EGF were higher in the AdMSCs group than in the RI treated group. 99mTc pertechnetate excretions were similar in the AdMSCs and sham group. Also, TUNEL positive apoptotic cell numbers were less in the AdMSCs group than in the RI group. Local delivery of AdMSCs might regenerate SG damage induced by RI.

Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 667
Author(s):  
Gabriella Racchetti ◽  
Jacopo Meldolesi

Mesenchymal stem cells (MSCs), the cells distributed in the stromas of the body, are known for various properties including replication, the potential of various differentiations, the immune-related processes including inflammation. About two decades ago, these cells were shown to play relevant roles in the therapy of numerous diseases, dependent on their immune regulation and their release of cytokines and growth factors, with ensuing activation of favorable enzymes and processes. Such discovery induced great increase of their investigation. Soon thereafter, however, it became clear that therapeutic actions of MSCs are risky, accompanied by serious drawbacks and defects. MSC therapy has been therefore reduced to a few diseases, replaced for the others by their extracellular vesicles, the MSC-EVs. The latter vesicles recapitulate most therapeutic actions of MSCs, with equal or even better efficacies and without the serious drawbacks of the parent cells. In addition, MSC-EVs are characterized by many advantages, among which are their heterogeneities dependent on the stromas of origin, the alleviation of cell aging, the regulation of immune responses and inflammation. Here we illustrate the MSC-EV therapeutic effects, largely mediated by specific miRNAs, covering various diseases and pathological processes occurring in the bones, heart and vessels, kidney, and brain. MSC-EVs operate also on the development of cancers and on COVID-19, where they alleviate the organ lesions induced by the virus. Therapy by MSC-EVs can be improved by combination of their innate potential to engineering processes inducing precise targeting and transfer of drugs. The unique properties of MSC-EVs explain their intense studies, carried out with extraordinary success. Although not yet developed to clinical practice, the perspectives for proximal future are encouraging.


2018 ◽  
Vol 19 (12) ◽  
pp. 3968 ◽  
Author(s):  
Enrico Spugnini ◽  
Mariantonia Logozzi ◽  
Rossella Di Raimo ◽  
Davide Mizzoni ◽  
Stefano Fais

Metastatic diffusion is thought to be a multi-step phenomenon involving the release of cells from the primary tumor and their diffusion through the body. Currently, several hypotheses have been put forward in order to explain the origin of cancer metastasis, including epithelial–mesenchymal transition, mutagenesis of stem cells, and a facilitating role of macrophages, involving, for example, transformation or fusion hybridization with neoplastic cells. In this paradigm, tumor-secreted extracellular vesicles (EVs), such as exosomes, play a pivotal role in cell communications, delivering a plethora of biomolecules including proteins, lipids, and nucleic acids. For their natural role in shuttling molecules, EVs have been newly considered a part of the metastatic cascade. They have a prominent role in preparing the so-called “tumor niches” in target organs. However, recent evidence has pointed out an even more interesting role of tumor EVs, consisting in their ability to induce malignant transformation in resident mesenchymal stem cells. All in all, in this review, we discuss the multiple involvements of EVs in the metastatic cascade, and how we can exploit and manipulate EVs in order to reduce the metastatic spread of malignant tumors.


2010 ◽  
Vol 79 (5) ◽  
pp. 317 ◽  
Author(s):  
Yong Beom Cho ◽  
Min Shik Kim ◽  
Min Jeong Kang ◽  
Hee Jung Shin ◽  
Seok-Hyung Kim ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jia-ming Chen ◽  
Qiao-yi Huang ◽  
Yun-xia Zhao ◽  
Wei-hong Chen ◽  
Shu Lin ◽  
...  

Intrauterine adhesion (IUA) is an endometrial fibrosis disease caused by repeated operations of the uterus and is a common cause of female infertility. In recent years, treatment using mesenchymal stem cells (MSCs) has been proposed by many researchers and is now widely used in clinics because of the low immunogenicity of MSCs. It is believed that allogeneic MSCs can be used to treat IUA because MSCs express only low levels of MHC class I molecules and no MHC class II or co-stimulatory molecules. However, many scholars still believe that the use of allogeneic MSCs to treat IUA may lead to immune rejection. Compared with allogeneic MSCs, autologous MSCs are safer, more ethical, and can better adapt to the body. Here, we review recently published articles on the immunomodulation of allogeneic and autologous MSCs in IUA therapy, with the aim of proving that the use of autologous MSCs can reduce the possibility of immune rejection in the treatment of IUAs.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Caixin Zhang ◽  
Pengbo Wang ◽  
Anaz Mohammed ◽  
Zhewen Zhou ◽  
Shuwen Zhang ◽  
...  

Pulmonary arterial hypertension (PAH) is a serious condition. However, prevailing therapeutic strategies are not effective enough to treat PAH. Therefore, finding an effective therapy is clearly warranted. Adipose-derived mesenchymal stem cells (ASCs) and ASCs-derived exosomes (ASCs-Exos) exert protective effects in PAH, but the underlying mechanism remains unclear. Using a coculture of ASCs and monocrotaline pyrrole (MCTP)-treated human pulmonary artery endothelial cells (HPAECs), we demonstrated that ASCs increased cell proliferation in MCTP-treated HPAECs. Results showed that ASCs-Exos improved proliferation of both control HPAECs and MCTP-treated HPAECs. In addition, by transfecting ASCs with antagomir we observed that low exosomal miR-191 expression inhibited HPAECs proliferation whereas the agomir improved. Similar results were observed in vivo using a monocrotaline (MCT)-induced PAH rat model following ASCs transplantation. And ASCs transplantation attenuated MCT-induced PAH albeit less than the antagomir treated group. Finally, we found that miR-191 repressed the expression of bone morphogenetic protein receptor 2 (BMPR2) in HPAECs and PAH rats. Thus, we conjectured that miR-191, in ASCs and ASCs-Exos, plays an important role in PAH via regulation of BMPR2. These findings are expected to contribute to promising therapeutic strategies for treating PAH in the future.


2018 ◽  
Vol 18 (3) ◽  
pp. 264 ◽  
Author(s):  
Roberto Berebichez-Fridman ◽  
Pablo R. Montero-Olvera

First discovered by Friedenstein in 1976, mesenchymal stem cells (MSCs) are adult stem cells found throughout the body that share a fixed set of characteristics. Discovered initially in the bone marrow, this cell source is considered the gold standard for clinical research, although various other sources—including adipose tissue, dental pulp, mobilised peripheral blood and birth-derived tissues—have since been identified. Although similar, MSCs derived from different sources possess distinct characteristics, advantages and disadvantages, including their differentiation potential and proliferation capacity, which influence their applicability. Hence, they may be used for specific clinical applications in the fields of regenerative medicine and tissue engineering. This review article summarises current knowledge regarding the various sources, characteristics and therapeutic applications of MSCs.Keywords: Mesenchymal Stem Cells; Adult Stem Cells; Regenerative Medicine; Cell Differentiation; Tissue Engineering.


Sign in / Sign up

Export Citation Format

Share Document