scholarly journals High-throughput screening reveals higher synergistic effect of MEK inhibitor combinations in colon cancer spheroids

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Evelina Folkesson ◽  
Barbara Niederdorfer ◽  
Vu To Nakstad ◽  
Liv Thommesen ◽  
Geir Klinkenberg ◽  
...  

AbstractDrug combinations have been proposed to combat drug resistance, but putative treatments are challenged by low bench-to-bed translational efficiency. To explore the effect of cell culture format and readout methods on identification of synergistic drug combinations in vitro, we studied response to 21 clinically relevant drug combinations in standard planar (2D) layouts and physiologically more relevant spheroid (3D) cultures of HCT-116, HT-29 and SW-620 cells. By assessing changes in viability, confluency and spheroid size, we were able to identify readout- and culture format-independent synergies, as well as synergies specific to either culture format or readout method. In particular, we found that spheroids, compared to 2D cultures, were generally both more sensitive and showed greater synergistic response to combinations involving a MEK inhibitor. These results further shed light on the importance of including more complex culture models in order to increase the efficiency of drug discovery pipelines.

2021 ◽  
Vol 22 (22) ◽  
pp. 12502
Author(s):  
Shoji Kokubo ◽  
Shinobu Ohnuma ◽  
Megumi Murakami ◽  
Haruhisa Kikuchi ◽  
Shota Funayama ◽  
...  

The ATP-binding cassette subfamily G member 2 (ABCG2) transporter is involved in the development of multidrug resistance in cancer patients. Many inhibitors of ABCG2 have been reported to enhance the chemosensitivity of cancer cells. However, none of these inhibitors are being used clinically. The aim of this study was to identify novel ABCG2 inhibitors by high-throughput screening of a chemical library. Among the 5812 compounds in the library, 23 compounds were selected in the first screening, using a fluorescent plate reader-based pheophorbide a (PhA) efflux assay. Thereafter, to validate these compounds, a flow cytometry-based PhA efflux assay was performed and 16 compounds were identified as potential inhibitors. A cytotoxic assay was then performed to assess the effect these 16 compounds had on ABCG2-mediated chemosensitivity. We found that the phenylfurocoumarin derivative (R)-9-(3,4-dimethoxyphenyl)-4-((3,3-dimethyloxiran-2-yl)methoxy)-7H-furo [3,2-g]chromen-7-one (PFC) significantly decreased the IC50 of SN-38 in HCT-116/BCRP colon cancer cells. In addition, PFC stimulated ABCG2-mediated ATP hydrolysis, suggesting that this compound interacts with the substrate-binding site of ABCG2. Furthermore, PFC reversed the resistance to irinotecan without causing toxicity in the ABCG2-overexpressing HCT-116/BCRP cell xenograft mouse model. In conclusion, PFC is a novel inhibitor of ABCG2 and has promise as a therapeutic to overcome ABCG2-mediated MDR, to improve the efficiency of cancer chemotherapy.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3784
Author(s):  
Anne M. Noonan ◽  
Amanda Cousins ◽  
David Anderson ◽  
Kristen P. Zeligs ◽  
Kristen Bunch ◽  
...  

Inhibitor of apoptosis (IAP) proteins are frequently upregulated in ovarian cancer, resulting in the evasion of apoptosis and enhanced cellular survival. Birinapant, a synthetic second mitochondrial activator of caspases (SMAC) mimetic, suppresses the functions of IAP proteins in order to enhance apoptotic pathways and facilitate tumor death. Despite on-target activity, however, pre-clinical trials of single-agent birinapant have exhibited minimal activity in the recurrent ovarian cancer setting. To augment the therapeutic potential of birinapant, we utilized a high-throughput screening matrix to identify synergistic drug combinations. Of those combinations identified, birinapant plus docetaxel was selected for further evaluation, given its remarkable synergy both in vitro and in vivo. We showed that this synergy results from multiple convergent pathways to include increased caspase activation, docetaxel-mediated TNF-α upregulation, alternative NF-kB signaling, and birinapant-induced microtubule stabilization. These findings provide a rationale for the integration of birinapant and docetaxel in a phase 2 clinical trial for recurrent ovarian cancer where treatment options are often limited and minimally effective.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3616-3616 ◽  
Author(s):  
Yunyi Kang ◽  
Trish Tran ◽  
Linda Zhang ◽  
Edward D. Ball ◽  
Carlo Piermarocchi ◽  
...  

Abstract Acute myeloid leukemia (AML) is a highly heterogeneous disorder characterized by the rapid clonal proliferation of blasts derived from hematopoietic progenitor cells, leading to failure of normal hematopoiesis. Although standard therapy, usually including idarubicin and cytarabine, has been used to achieve remission, the long-term survival rates remain low. To show that it is possible to improve existing AML standard therapy, we have used experimental algorithms we have recently developed (iterative algorithms that find effective combinations without a full combinatorial screening) to find selective drug combinations for AML cells. The first search was done using the AML cell line KG-1 for the initial steps and cells from an AML patient for the final step. A normal fibroblast cell line (IMR-90) and normal blood progenitor cells were used as controls for toxicity. Drugs were chosen from those already approved or in clinical trials for AML. As shown in Figure 1, this experimental search was able to achieve selective killing of AML patient cells with a ratio close to 100:1 with respect to non-cancer control cells. To refine the choice of drugs to be used in the search, we recently developed a network model of AML intracellular signal transduction (see www.leukemianetworks.org). The present version (AML 2.1) includes 5667 proteins and 22,218 interactions. The network can be used to integrate genomic and gene expression information from individual patients and to provide a shortlist of drugs to be tested further. Using literature data and our network model we identified three compounds as promising for AML drug combinations: the MEK inhibitor PD0325901, the FLT3 inhibitor Quizartinib and the CDK 4/6 inhibitor Palbociclib. For this experiment, normal progenitor blood cells were the controls. Figure 2 shows the results of 64 experimental tests of the response to different combinations of these drugs. The two AML patients clearly exhibited different drug sensitivities, further supporting the necessity of personalized drug combinations. To improve the clinical relevance of these in vitro studies, we investigated the correlation between clinical and in vitro response to standard AML therapy, using a set of media containing 16 cytokines/growth factors in different combinations. These molecules have been selected using three methods: ligands acting on receptors that are part of gene signatures with prognostic significance in AML; cytokines that promote hematopoietic differentiation of stem cells; and ligands of receptors identified as playing an important role in AML in a recent RNAi screen. During several iterations of our combinatorial search algorithm we studied 185 different media. Figure 3 shows the correlation between clinical response (residual blasts after 28 days of therapy) and response to the same therapy in vitro after 72 h achieved in the last iteration of the search, in a study of six patients. The medium with the highest correlation had a correlation coefficient of 0.99 (p=0.0002). The in vitro response in this medium is clearly able to distinguish patients that respond to standard therapy vs those that do not, as can be seen from the inset of Fig. 3. Some cytokines (BMP-4 and IL-4) were always absent in the group of 14 media with lower correlation shown on the right of Figure 3. The remarkable variation in correlation with clinical response of these media, spanning correlation coefficient values from 0.99 to 0.004, clearly show the importance of optimizing the in vitro microenvironment for prediction of patient drug response. In summary, we identified drug combinations that selectively kill AML primary cells and we optimized media that improve the in vitro prediction of clinical drug response. These methods can together assist in the personalization of AML therapy using patientÕs cells. Figure 1. Selective drug combinations for AML primary cells. Selectivity is the ratio between AML and control cell viability. Figure 1. Selective drug combinations for AML primary cells. Selectivity is the ratio between AML and control cell viability. Figure 2. Selective drug combinations for AML primary cells from two patients, using multiple doses and combinations of Quizartinib, PD-0325901 and Palbociclib. Patient 2005-9 responded to MEK inhibitor PD-0325901 whereas Patient 2010-7 responded to FLT3 inhibitor Quizartinib. Figure 2. Selective drug combinations for AML primary cells from two patients, using multiple doses and combinations of Quizartinib, PD-0325901 and Palbociclib. Patient 2005-9 responded to MEK inhibitor PD-0325901 whereas Patient 2010-7 responded to FLT3 inhibitor Quizartinib. Figure 3. A pilot study showing the clinically predictive power of optimized media. The inset shows the best medium. Please note the strong effect of media composition on clinical correlation. Figure 3. A pilot study showing the clinically predictive power of optimized media. The inset shows the best medium. Please note the strong effect of media composition on clinical correlation. Disclosures Piermarocchi: Salgomed Inc.: Equity Ownership. Paternostro:Salgomed Inc.: Equity Ownership.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Evelina Folkesson ◽  
Barbara Niederdorfer ◽  
Vu To Nakstad ◽  
Liv Thommesen ◽  
Geir Klinkenberg ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2020 ◽  
Author(s):  
Daniel Herp ◽  
Johannes Ridinger ◽  
Dina Robaa ◽  
Stephen A. Shinsky ◽  
Karin Schmidtkunz ◽  
...  

Histone deacetylases (HDACs) are important epigenetic regulators involved in many diseases, esp. cancer. First HDAC inhibitors have been approved for anticancer therapy and many are in clinical trials. Among the 11 zinc-dependent HDACs, HDAC10 has received relatively little attention by drug discovery campaigns, despite its involvement e.g. in the pathogenesis of neuroblastoma. This is due in part to a lack of robust enzymatic conversion assays. In contrast to the protein lysine deacetylase and deacylase activity of the other HDAC subtypes, it has recently been shown that HDAC10 has strong preferences for deacetylation of oligoamine substrates like spermine or spermidine. Hence, it also termed a polyamine deacetylase (PDAC). Here, we present the first fluorescent enzymatic conversion assay for HDAC10 using an aminocoumarin labelled acetyl spermidine derivative to measure its PDAC activity, which is suitable for high-throughput screening. Using this assay, we identified potent inhibitors of HDAC10 mediated spermidine deacetylation in-vitro. Among those are potent inhibitors of neuroblastoma colony growth in culture that show accumulation of lysosomes, implicating disturbance of autophagic flux.


2019 ◽  
Vol 26 (7) ◽  
pp. 512-522
Author(s):  
Xian Li ◽  
Long Xia ◽  
Xiaohui Ouyang ◽  
Qimuge Suyila ◽  
Liya Su ◽  
...  

<P>Background: Despite new agent development and short-term benefits in patients with Colorectal Cancer (CRC), metastatic CRC cure rates have not improved due to high rates of oxaliplatin resistance and toxicity. There is an urgent need for effective tools to prevent and treat CRC and reduce morbidity and mortality of CRC patients. Exploring the effects of bioactive peptides on the antitumor to CRC was of vital importance to the clinical application. </P><P> Objective: This study aimed to investigate the therapeutic impact of Anticancer Bioactive Peptides (ACBP) on anticancer effect of oxaliplatin (LOHP) in human colorectal cancer xenografts models in nude mice. </P><P> Methods: HCT-116 cells were cultured in vitro via CCK-8 assays and the absorbance was measured at 450 nm. Apoptosis and cell cycle were assessed by Flow Cytometry (FCM) in vitro. HCT-116 human colorectal cancer cells inoculated subcutaneously in nude mice of treatment with PBS (GG), ACBP, LOHP, ACBP+LOHP (A+L) in vivo. The quality of life was assessed by dietary amount of nude mice, the weight of nude mice, inhibition rates, tumor weight and tumor volume. Immunohistochemistry and RT-qPCR method was conducted to determine the levels of apoptosisregulating proteins/genes in transplanted tumors. </P><P> Results: ACBP induced substantial reductions in viable cell numbers and apoptosis of HCT116 cells in combined with LOHP in vitro. Compared with the control GG group, ACBP combined low dose oxaliplatin (U) group demonstrated significantly different tumor volume, the rate of apoptosis, the expression levels of Cyt-C, caspase-3,8,9 proteins and corresponding RNAs (P<0.05). The expression of pro-apoptotic proteins in the cytoplasm around the nucleus was significantly enhanced by ACBP. Short term intermittent use of ACBP alone indicted a certain inhibitory effect on tumor growth, and improve the quality of life of tumor bearing nude mice. </P><P> Conclusion: ACBP significantly increased the anti-cancer responses of low dose oxaliplatin (L-LOHP), thus, significantly improving the quality of life of tumor-bearing nude mice.</P>


2020 ◽  
Vol 27 (29) ◽  
pp. 4778-4788 ◽  
Author(s):  
Victoria Heredia-Soto ◽  
Andrés Redondo ◽  
José Juan Pozo Kreilinger ◽  
Virginia Martínez-Marín ◽  
Alberto Berjón ◽  
...  

Sarcomas are tumours of mesenchymal origin, which can arise in bone or soft tissues. They are rare but frequently quite aggressive and with a poor outcome. New approaches are needed to characterise these tumours and their resistance mechanisms to current therapies, responsible for tumour recurrence and treatment failure. This review is focused on the potential of three-dimensional (3D) in vitro models, including multicellular tumour spheroids (MCTS) and organoids, and the latest data about their utility for the study on important properties for tumour development. The use of spheroids as a particularly valuable alternative for compound high throughput screening (HTS) in different areas of cancer biology is also discussed, which enables the identification of new therapeutic opportunities in commonly resistant tumours.


2019 ◽  
Vol 19 (10) ◽  
pp. 1285-1292 ◽  
Author(s):  
Kuldip D. Upadhyay ◽  
Anamik K. Shah

Background: Quinoline analogues exhibited diversified biological activities depending on the structure type. A number of natural products with pyrano[3,2-c]quinolone structural motifs and patented chromenes were reported as promising cytotoxic agents. Objective: The present study is aimed to evaluate a new series of pyrano[3,2-c]quinoline scaffolds derived from the fusion of bioactive quinolone pharmacophore with structurally diverse aryl substituted chromene for its cytotoxicity. Methods: A library of pyrano[3,2-c]quinoline analogues was prepared from one-pot multi component synthesis using various aromatic aldehydes, malononitrile and 2,4-dihydroxy-1-methylquinoline. The new synthetics were primarily screened for its cytotoxicity (IC50) against different human cancer cell lines in vitro. The promising synthetics were further evaluated in vitro for their potency against different kinase activity. The promising compounds were finally tested for their in vivo efficacy in SCID type mice HCT-116 tumor model. Results: The screening results revealed that compounds 4c, 4f, 4i and 4j showed promising activity in in vitro study. However, compound 4c was found to be the most potent candidate with 23% tumor growth inhibition in HCT-116 tumor mice model. Conclusion: The structure activity relationship suggested that 3-substitution on the aryl ring at C4 position of the pyrano[3,2 c]quinolone moiety seems to have an important position for cytotoxicity activity. However, 3- chloro substitution at C4 aryl ring showed a significant alteration of the bioactive conformer of the parent scaffold and outcome with compound 4c as the most potent candidate of the series.


Author(s):  
Jorge A. Ramos-Hernández ◽  
Montserrat Calderón-Santoyo ◽  
Armando Burgos-Hernández ◽  
Joel S. García- Romo ◽  
Arturo Navarro-Ocaña ◽  
...  

Background: Cancer is a disease characterized by the invasion and uncontrolled growth of cells. One of the best ways to minimize the harmful effects of mutagens is through the use of natural antimutagens. In this regard, the search for new antimutagens that act in the chemoprevention could represent a promising field in this area. Objective: In this study biological potential of 11 fractions from Coccoloba uvifera L. leaf hexane extract was evaluated by several in vitro tests. Methods: Leaves were lyophilized and hexane extraction was performed. The extract was fractionated by column chromatography with hexane, ethyl acetate, and methanol. The antimutagenic (Ames test), antiproliferative (MTT test), and antioxidant capacity (DPPH, ABTS, and ferrous ion chelation) of the fractions were evaluated. Results: Fractions 4, 6, 8, and 9 have antimutagenic activity (against sodium azide in strain TA100), fraction 11 showed antiproliferative capacity (IC50 of 24 ± 9 μg/mL in cells of HCT 116). The fractions with the highest activity were analyzed by HPLC-MS and lupeol, acacetin, and β-sitosterol were identified. Conclusion: This study demonstrates, for the first time, the bioactivity of C. uvifera leaf as a new source of high biological value compounds (HBVC), which can be of interest to the food and pharmaceutical industries.


Sign in / Sign up

Export Citation Format

Share Document