scholarly journals Maternal exercise conveys protection against NAFLD in the offspring via hepatic metabolic programming

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Inga Bae-Gartz ◽  
Philipp Kasper ◽  
Nora Großmann ◽  
Saida Breuer ◽  
Ruth Janoschek ◽  
...  

Abstract Maternal exercise (ME) during pregnancy has been shown to improve metabolic health in offspring and confers protection against the development of non-alcoholic fatty liver disease (NAFLD). However, its underlying mechanism are still poorly understood, and it remains unclear whether protective effects on hepatic metabolism are already seen in the offspring early life. This study aimed at determining the effects of ME during pregnancy on offspring body composition and development of NAFLD while focusing on proteomic-based analysis of the hepatic energy metabolism during developmental organ programming in early life. Under an obesogenic high-fat diet (HFD), male offspring of exercised C57BL/6J-mouse dams were protected from body weight gain and NAFLD in adulthood (postnatal day (P) 112). This was associated with a significant activation of hepatic AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor alpha (PPARα) and PPAR coactivator-1 alpha (PGC1α) signaling with reduced hepatic lipogenesis and increased hepatic β-oxidation at organ programming peak in early life (P21). Concomitant proteomic analysis revealed a characteristic hepatic expression pattern in offspring as a result of ME with the most prominent impact on Cholesterol 7 alpha-hydroxylase (CYP7A1). Thus, ME may offer protection against offspring HFD-induced NAFLD by shaping hepatic proteomics signature and metabolism in early life. The results highlight the potential of exercise during pregnancy for preventing the early origins of NAFLD.

2021 ◽  
Vol 12 ◽  
Author(s):  
Farah Javaid ◽  
Malik Hassan Mehmood ◽  
Bushra Shaukat

Alpinia officinarum Hance (Zingiberaceae) has been used widely in traditional Chinese and Ayurvedic medicines. Its folkloric uses include relieving stomach ache, treating cold, improving the circulatory system, and reducing swelling. Its effectiveness and mechanism of antihypertension in obesity-induced hypertensive rats have not been studied yet as per our knowledge. This study has been designed to provide evidence of underlying mechanisms to the medicinal use of A. officinarum as a cardiotonic using an obesity-induced hypertension model in rats. Chronic administration of A. officinarum caused a marked reduction in the body weight gain and Lee index of rats compared to the obesogenic diet-fed rats. Its administration also caused attenuation in blood pressure (systolic, diastolic, and mean), serum total cholesterol, triglyceride, and leptin, while an increase in serum HDL and adiponectin levels was noticed. The catalase and superoxide dismutase enzymatic activities were found to be remarkable in the serum of A. officinarum-treated animal groups. A. officinarum showed mild to moderate diuretic, hepatoprotective, and reno-protective effects. The A. officinarum-treated group showed less mRNA expression of 3-hydroxy-3-methylglutaryl-CoA reductase while the mRNA expression of peroxisome proliferator-activated receptor and mRNA expression of cholesterol 7 alpha-hydroxylase were raised in comparison to the hypertensive group of rats evaluated by quantitative real-time polymerase chain reaction. These findings show that A. officinarum possesses antihypertensive and diuretic activities, thus providing a rationale to the medicinal use of A. officinarum in cardiovascular ailments.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Xue Han ◽  
Daili Chen ◽  
Ning Liufu ◽  
Fengtao Ji ◽  
Qingshi Zeng ◽  
...  

Background. The heart is one of the most commonly affected organs during sepsis. Mitsugumin-53 (MG53) has attracted attention in research due to its cardioprotective function. However, the role of MG53 in sepsis-induced myocardial dysfunction (SIMD) remains unknown. The purpose of this study was to explore the underlying mechanism of MG53 in SIMD and investigate its potential relationship with peroxisome proliferator-activated receptor-α (PPARα). Methods. The cecal ligation and puncture (CLP) model was created to induce SIMD in rats. Protein levels of MG53 and PPARα, cardiac function, cardiomyocyte injury, myocardial oxidative stress and inflammatory indicators, and cardiomyocyte apoptosis were measured at 18 h after CLP. The effects of MG53 on PPARα in SIMD were investigated via preconditioning recombinant human MG53 (rhMG53) and PPARα antagonist GW6471. Results. The expression of MG53 and PPARα sharply decreased in the myocardium at 18 h after CLP. Compared with the sham group, cardiac function was significantly depressed, which was associated with the destructed myocardium, upregulated oxidative stress indicators and proinflammatory cytokines, and excessive cardiomyocyte apoptosis in the CLP group. Supplementation with rhMG53 enhanced myocardial MG53, increased the survival rate with improved cardiac function, and reduced oxidative stress, inflammation, and myocardial apoptosis, which were associated with PPARα upregulation. Pretreatment with GW6471 abolished the abovementioned protective effects induced by MG53. Conclusions. Both MG53 and PPARα were downregulated after sepsis shock. MG53 supplement protects the heart against SIMD by upregulating PPARα expression. Our results provide a new treatment strategy for SIMD.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chien-Chen Wu ◽  
Wei-Lien Weng ◽  
Wen-Lin Lai ◽  
Hui-Ping Tsai ◽  
Wei-Hsien Liu ◽  
...  

Recent studies have demonstrated beneficial effects of specific probiotics on alleviating obesity-related disorders. Here we aimed to identify probiotics with potential antiobesity activity among 88 lactic acid bacterial strains viain vitroscreening assays, and aLactobacillus plantarumstrain K21 was found to harbor abilities required for hydrolyzing bile salt, reducing cholesterol, and inhibiting the accumulation of lipid in 3T3-L1 preadipocytes. Furthermore, effects of K21 on diet-induced obese (DIO) mice were examined. Male C57Bl/6J mice received a normal diet, high-fat diet (HFD), or HFD with K21 administration (109 CFU in 0.2 mL PBS/day) for eight weeks. Supplementation of K21, but not placebo, appeared to alleviate body weight gain and epididymal fat mass accumulation, reduce plasma leptin levels, decrease cholesterol and triglyceride levels, and mitigate liver damage in DIO mice. Moreover, the hepatic expression of peroxisome proliferator-activated receptor-γ(PPAR-γ) related to adipogenesis was significantly downregulated in DIO mice by K21 intervention. We also found that K21 supplementation strengthens intestinal permeability and modulates the amount ofLactobacillusspp.,Bifidobacteriumspp., andClostridium perfringensin the cecal contents of DIO mice. In conclusion, our results suggest that dietary intake of K21 protects against the onset of HFD-induced obesity through multiple mechanisms of action.


2020 ◽  
Vol 48 (5) ◽  
pp. 030006052092425
Author(s):  
Yinan Yang ◽  
Changwei Wei ◽  
Jinhu Liu ◽  
Danxu Ma ◽  
Chao Xiong ◽  
...  

Objective Postoperative neurocognitive disorder (PND) is a main complication that is commonly seen postoperatively in elderly patients. The underlying mechanism remains unclear, although neuroinflammation has been increasingly observed in PND. Atorvastatin is a pleiotropic agent with proven anti-inflammatory effects. In this study, we investigated the effects of atorvastatin on a PND mouse model after peripheral surgery. Material and methods The mice were randomized into five groups. The PND models were established, and an open field test and fear condition test were performed. Hippocampal inflammatory cytokine expression was determined using ELISA. Peroxisome proliferator-activated receptor-gamma (PPARγ) expression in the hippocampus was tested using qRT-PCR and western blot analysis. Results On day 1 after surgery, inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, and interleukin-6 showed a significant increase in the hippocampus, with prominent cognitive impairment. Atorvastatin treatment improved cognitive function in the mouse model, attenuated neuroinflammation, and increased PPARγ expression in the hippocampus. However, treatment with the PPARγ antagonist GW9662 partially reversed the protective effects of atorvastatin. Conclusions These results indicated that atorvastatin improves several hippocampal functions and alleviates inflammation in PND mice after surgery, probably through a PPARγ-involved signaling pathway.


2020 ◽  
Vol 21 (6) ◽  
pp. 599-609 ◽  
Author(s):  
Longxin Qiu ◽  
Chang Guo

Aldose reductase (AR) has been reported to be involved in the development of nonalcoholic fatty liver disease (NAFLD). Hepatic AR is induced under hyperglycemia condition and converts excess glucose to lipogenic fructose, which contributes in part to the accumulation of fat in the liver cells of diabetes rodents. In addition, the hyperglycemia-induced AR or nutrition-induced AR causes suppression of the transcriptional activity of peroxisome proliferator-activated receptor (PPAR) α and reduced lipolysis in the liver, which also contribute to the development of NAFLD. Moreover, AR induction in non-alcoholic steatohepatitis (NASH) may aggravate oxidative stress and the expression of inflammatory cytokines in the liver. Here, we summarize the knowledge on AR inhibitors of plant origin and review the effect of some plant-derived AR inhibitors on NAFLD/NASH in rodents. Natural AR inhibitors may improve NAFLD at least in part through attenuating oxidative stress and inflammatory cytokine expression. Some of the natural AR inhibitors have been reported to attenuate hepatic steatosis through the regulation of PPARα-mediated fatty acid oxidation. In this review, we propose that the natural AR inhibitors are potential therapeutic agents for NAFLD.


Author(s):  
Dalia Medhat ◽  
Mona A. El-Bana ◽  
Sherien M. El-Daly ◽  
Magdi N. Ashour ◽  
Tahany R. Elias ◽  
...  

Abstract Objective To evaluate the influence of irisin on the experimental paradigm of non-alcoholic fatty liver (NAFL) as a part of MetS cluster. Methods Forty male albino rats were divided into four groups; normal control, standard diet + irisin, high carbohydrate and fat diet (HCHF), and HCHF + irisin. After the experimental period, levels of fasting blood sugar (FBS), insulin, lipid profile, kidney functions, salusin-alpha (Sal-α), adropin, and retinol-binding protein-4 (RBP-4) were evaluated. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) expression in skeletal muscle was evaluated by quantitative real-time PCR. Aorta, liver, pancreas, and skeletal muscle tissue samples were prepared for histopathological examination. Results Rats administrated HCHF showed elevated levels of FBS, lipid profile, kidney functions, RBP-4, and downregulation of PGC-1α expression along with a decline in levels of insulin, Sal-α, and adropin while administration of irisin significantly attenuated these levels. Conclusions Irisin as based therapy could emerge as a new line of treatment against MetS and its related diseases.


Author(s):  
Ryuni Kim ◽  
Hyebeen Kim ◽  
Minju Im ◽  
Sun Kyu Park ◽  
Hae Jung Han ◽  
...  

BST204 is a purified ginseng dry extract that has an inhibitory effect on lipopolysaccharide-induced inflammatory responses, but its effect on muscle atrophy is yet to be investigated. In this study, C2C12 myoblasts were induced to differentiate for three days followed by the treatment of dexamethasone (DEX), a corticosteroid drug, with vehicle or BST204 for one day and subjected to immunoblotting, immunocytochemistry, qRT-PCR and biochemical analysis for mitochondrial function. BST204 alleviates the myotube atrophic effect mediated by DEX via the activation of protein kinase B/mammalian target of rapamycin (Akt/mTOR) signaling. Through this pathway, BST204 suppresses the expression of muscle-specific E3 ubiquitin ligases contributing to the enhanced myotube formation and enlarged myotube diameter in DEX-treated myotubes. In addition, BST204 treatment significantly decreases the mitochondrial reactive oxygen species production in DEX-treated myotubes. Furthermore, BST204 improves mitochondrial function by upregulating the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) in DEX-induced myotube atrophy. This study provides a mechanistic insight into the effect of BST204 on DEX-induced myotube atrophy, suggesting that BST204 has protective effects against the toxicity of a corticosteroid drug in muscle and promising potential as a nutraceutical remedy for the treatment of muscle weakness and atrophy.


Gut ◽  
2020 ◽  
pp. gutjnl-2020-321767
Author(s):  
Marta B Afonso ◽  
Pedro M Rodrigues ◽  
Miguel Mateus-Pinheiro ◽  
André L Simão ◽  
Maria M Gaspar ◽  
...  

ObjectiveReceptor-interacting protein kinase 3 (RIPK3) is a key player in necroptosis execution and an emerging metabolic regulator, whose contribution to non-alcoholic fatty liver disease (NAFLD) is controversial. We aimed to clarify the impact of RIPK3 signalling in the pathogenesis of human and experimental NAFLD.DesignRIPK3 levels were evaluated in two large independent cohorts of patients with biopsy proven NAFLD diagnosis and correlated with clinical and biochemical parameters. Wild-type (WT) or Ripk3-deficient (Ripk3−/−) mice were fed a choline-deficient L-amino acid-defined diet (CDAA) or an isocaloric control diet for 32 and 66 weeks.ResultsRIPK3 increased in patients with non-alcoholic steatohepatitis (NASH) in both cohorts, correlating with hepatic inflammation and fibrosis. Accordingly, Ripk3 deficiency ameliorated CDAA-induced inflammation and fibrosis in mice at both 32 and 66 weeks. WT mice on the CDAA diet for 66 weeks developed preneoplastic nodules and displayed increased hepatocellular proliferation, which were reduced in Ripk3−/− mice. Furthermore, Ripk3 deficiency hampered tumourigenesis. Intriguingly, Ripk3−/− mice displayed increased body weight gain, while lipidomics showed that deletion of Ripk3 shifted hepatic lipid profiles. Peroxisome proliferator-activated receptor γ (PPARγ) was increased in Ripk3−/− mice and negatively correlated with hepatic RIPK3 in patients with NAFLD. Mechanistic studies established a functional link between RIPK3 and PPARγ in controlling fat deposition and fibrosis.ConclusionHepatic RIPK3 correlates with NAFLD severity in humans and mice, playing a key role in managing liver metabolism, damage, inflammation, fibrosis and carcinogenesis. Targeting RIPK3 and its intricate signalling arises as a novel promising approach to treat NASH and arrest disease progression.


2021 ◽  
Vol 11 (3) ◽  
pp. 325
Author(s):  
Fatima M. Shakova ◽  
Yuliya I. Kirova ◽  
Denis N. Silachev ◽  
Galina A. Romanova ◽  
Sergey G. Morozov

The pharmacological induction and activation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), a key regulator of ischemic brain tolerance, is a promising direction in neuroprotective therapy. Pharmacological agents with known abilities to modulate cerebral PGC-1α are scarce. This study focused on the potential PGC-1α-modulating activity of Mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) and Semax (ACTH(4–7) analog) in a rat model of photochemical-induced thrombosis (PT) in the prefrontal cortex. Mexidol (100 mg/kg) was administered intraperitoneally, and Semax (25 μg/kg) was administered intranasally, for 7 days each. The expression of PGC-1α and PGC-1α-dependent protein markers of mitochondriogenesis, angiogenesis, and synaptogenesis was measured in the penumbra via immunoblotting at Days 1, 3, 7, and 21 after PT. The nuclear content of PGC-1α was measured immunohistochemically. The suppression of PGC-1α expression was observed in the penumbra from 24 h to 21 days following PT and reflected decreases in both the number of neurons and PGC-1α expression in individual neurons. Administration of Mexidol or Semax was associated with preservation of the neuron number and neuronal expression of PGC-1α, stimulation of the nuclear translocation of PGC-1α, and increased contents of protein markers for PGC-1α activation. This study opens new prospects for the pharmacological modulation of PGC-1α in the ischemic brain.


Author(s):  
Jing Li ◽  
Kewei Xu ◽  
Hao Ding ◽  
Qiaozhen Xi

Abstract Aims Increasing preclinical and clinical reports have demonstrated the efficacy of gabapentin (GBP) in treating alcohol use disorder (AUD). However, the mechanism of the effects of GBP in AUD is largely unknown. Herein, we sought to investigate the effect of GBP in a rat model of AUD and explore the underlying mechanism. Methods The intermittent access to 20% ethanol in a 2-bottle choice (IA2BC) procedure was exploited to induce high voluntary ethanol consumption in rats. The rats were treated daily for 20 days with different doses of GBP, simultaneously recording ethanol/water intake. The locomotor activity and grooming behavior of rats were also tested to evaluate the potential effects of GBP on confounding motor in rats. The levels of IL-1β and TNF-α in serum and hippocampus homogenate from the rats were detected by using ELISA. The expressions of peroxisome proliferator-activated-receptor γ (PPAR-γ) and nuclear factor-κB (NF-κB) in the hippocampus were determined by immunofluorescence and western blot. Results GBP reduced alcohol consumption, whereas increased water consumption and locomotor activity of rats. GBP was also able to decrease the levels of IL-1β and TNF-α in both serum and hippocampus, in addition to the expression of NF-κB in the hippocampus. Furthermore, these effects attributed to GBP were observed to disappear in the presence of bisphenol A diglycidyl ether (BADGE), a specific inhibitor of PPAR-γ. Conclusions Our findings revealed that GBP could activate PPAR-γ to suppress the NF-κB signaling pathway, contributing to the decrease of ethanol consumption and ethanol-induced neuroimmune responses.


Sign in / Sign up

Export Citation Format

Share Document