scholarly journals Immediate and transgenerational effects of thymol supplementation, inactivated Salmonella and chronic heat stress on representative immune variables of Japanese quail

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
E. A. Videla ◽  
O. Giayetto ◽  
M. E. Fernández ◽  
P. A. Chacana ◽  
R. H. Marín ◽  
...  

Abstract Environmental challenges are integrated in the inmunoneuroendocrine interplay, impacting the immune system of the challenged individuals, and potentially implying transgenerational effects on their offspring. This study addressed whether dietary supplementation with thymol can modulate the immune response of adult Japanese quail when simultaneously exposed to an inoculum of inactivated Salmonella Enteritidis and a chronic heat stress (CHS). We also evaluated whether the experienced situations by adults can affect the immune response of their undisturbed offspring. In the parental generation, supplemented quail exposed to CHS had a higher inflammatory response and similar values of the heterophil/lymphocyte (H/L) ratio than those that were not supplemented. In their offspring, those chicks whose parents were exposed to CHS showed higher inflammatory response and lower antibody production. Regarding the H/L ratio, chicks whose parents were supplemented showed lower H/L ratio values. Dietary supplementation with thymol partially and positively modulated the inflammatory response and avoided H/L ratio alteration in the parental generation exposed to high environmental temperatures, suggesting these adults were better at dealing with the challenge. The lower H/L ratio values in the offspring suggests that chicks are more capable to deal with potential stressful situations associated with conventional breeding conditions.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 22-22 ◽  
Author(s):  
Amanda Mener ◽  
Connie M. Arthur ◽  
Seema R. Patel ◽  
Sean R. Stowell

Abstract Background:Red blood cell (RBC) transfusion can result in the development of alloantibodies that can make it difficult to find compatible RBCs for future transfusions and increase the risk of hemolytic transfusion reactions. Despite the consequences of RBC alloimmunization, the factors that regulate this process remain relatively unknown. Recent studies suggest that complement deposition on an antigen surface can significantly enhance the immune response to foreign antigen. As many anti-RBC alloantibodies fix complement and RBCs otherwise lack known adjuvants, early antibody-mediated complement deposition may serve as a key regulator that enhances antibody production. To test this, we employed the KEL RBC model system, which employs RBCs that transgenically express the human KEL antigen specifically on RBCs (KEL RBCs). Using this system, we examined the immunological consequence of KEL RBC exposure following transfusion into C57BL/6 wild-type (WT) or complement component 3 (C3) knockout (KO) recipients. Methods: KEL RBCs were transfused into WT or C3 KO recipients, followed by serum collection on days 3, 5, 7, 14, and 21 post-transfusion. Antibody development in WT or C3 KO recipients was examined by flow crossmatch, where serum was incubated with KEL RBCs followed by antibody detection with fluorescently-tagged secondary anti-IgM and anti-IgG antibodies using flow cytometry. To determine the impact of complement deposition on the level of detectable antigen on the RBC surface, RBCs were labeled with the lipophilic dye, DiI, prior to transfusion and then sampled 1, 2, 3, 5, 7 and 9 days post-transfusion. The level of detectable KEL antigen, complement deposition, KEL RBC survival and antibody bound to the RBC surface was measured by flow cytometry. To examine the effect of complement deposition on the level of KEL protein in the RBC membrane post-transfusion, RBCs stroma was isolated at various time points post transfusion, followed by western blot analysis for the KEL protein. Results: While KEL RBCs induced robust anti-KEL antibody formation and C3 deposition in WT recipients, similar exposure to KEL RBCs in C3 KO recipients actually resulted in an unexpected increase in IgM and IgG anti-KEL antibodies when compared to WT recipients. To determine the consequence of C3 deposition, we examined the potential impact of antibody engagement and complement fixation on KEL antigen levels. Consistent with a potential role for complement in directly impacting KEL antigen availability to the immune system, KEL RBCs transferred into WT recipients experienced a decrease in the level of detectable KEL antigen over time that paralleled the development of anti-KEL antibodies and C3 deposition. In contrast, C3 KO recipients failed to experience the same degree of KEL antigen reduction despite the development of significant anti-KEL antibodies over this same time period. Western blot analysis of RBCs post-transfusion revealed that loss of detectable KEL antigen on the RBC surface paralleled a complete lack of detectable KEL antigen in RBC membranes, indicating that C3 may actually facilitate the removal of KEL from the RBC surface. Conclusion: These results suggest an unexpected role for C3 in negatively regulating antibody responses following RBC transfusion. The impact of C3 on the developing alloantibody response strongly suggests that C3-mediated loss of antigen over time likely reduces antigen availability to the immune system, thereby facilitating the inhibition of antibody production over time. These results not only provide novel insight into potential impact of antigen modulation on the development of an immune response to a RBC alloantigen, but also suggest a completely unexpected role for complement in negatively regulating alloantibody production. In doing so, these results suggest that unique differences in complement activity and overall activation following RBC alloantigen exposure between individuals may represent a previously unrecognized factor that influences alloantibody formation following RBC transfusion. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 17 (3) ◽  
pp. 591-604 ◽  
Author(s):  
Sugiharto Sugiharto ◽  
Turrini Yudiarti ◽  
Isroli Isroli ◽  
Endang Widiastuti ◽  
Endang Kusumanti

Abstract Heat-related stress has become a serious problem in poultry industry along with the global temperatures rise. Heat stress causes detrimental effects on physiology, immunology and microbiology resulting in abnormalities and impaired performances of birds. Several nutritional strategies have been conducted to counteract the detrimental effects of heat stress in poultry, including dietary supplementation of probiotics. This strategy has been proposed to ameliorate the intestinal ecosystem, physiological conditions and immune system, leading to the improved performance and health of birds subjected to heat stress. This review presents the potential benefits of probiotics against heat stress in poultry from the viewpoint of intestinal microbial ecology, morphology and structure, physiological conditions, immune system and production performances. The possible mechanisms through which probiotics may give beneficial impacts on heat-stressed birds are also discussed along with the data reporting the possible drawbacks of using probiotics in heat-stressed poultry.


2021 ◽  
Vol 10 (3) ◽  
pp. 2402-2413

Currently, a novel coronavirus disease 2019 (COVID 19) caused by SARS-CoV-2 has emerged worldwide. This chronic viral infection causes an acute respiratory distress syndrome (ARDS) which its pathophysiology is not yet well elucidated. However, ARDS has shown that ARDS causes diffuse alveolar damages induced by an excessive inflammatory response and a lack of anti-inflammatory response to the virus. Furthermore, these pathophysiological characteristics are associated with multiorgan failure and can increase the mortality rate. The difference in immune system response against COVID-19 is not well known. However, variability in innate immune system receptors between patients infected with SARS-CoV-2 as a function of aging and sex can explain this difference. Thus, innate immune memory or trained immunity mediated by epigenetic mechanisms is also involved in the variability response against COVID-19. The action of an adaptative immune response, in particular, antigen presentation via HLA is also a key element in this variability. Finally, each viral strain's capacity in evading the action of the immune response has also been suggested as an important mechanism by which certain patients infected with SARS-CoV-2 develop severity and others did not develop any clinical symptoms.


2021 ◽  
Author(s):  
◽  
Jennifer Mae Williams-Spence

<p>Remote ischaemic preconditioning (RIPC) describes the phenomenon where brief intermittent periods of limb ischaemia are used to protect the heart and other organs from subsequent prolonged ischaemic insults. RIPC has been identified as a promising intervention for use during cardiac surgery and has consistently shown a beneficial effect in animal models; however, the results of early clinical trials have not been as successful. The exact mechanisms involved in mediating RIPC have not yet been characterised and a better understanding of the pathways through which RIPC exerts its protective effects will be essential in order to progress the translation of this intervention into the clinical setting. There is increasing evidence that RIPC modifies the inflammatory response, therefore the central aim of the research presented in this thesis was to investigate how RIPC affects the human immune system.  We performed a double-blind randomised controlled trial of RIPC in 96 high-risk cardiac surgery patients and found no evidence that the intervention reduced myocardial injury or altered peri-operative expression levels of the key inflammatory cytokines, interleukin (IL)-6, IL-8, and IL-10, during simple or more complex procedures. There was a trend towards higher levels of IL-6 and IL-8 in the preconditioned patients; however, confounding variables in the trial design and the heterogeneous patient population limited our ability to interpret the results.  We next conducted a paired-analysis trial with 10 healthy male volunteers to assess the direct effect of preconditioning on the early immune response, away from any form of ischaemic injury or comorbidities. We found that RIPC directly and significantly decreased serum levels of the chemokines MIP-1α and MIP-1β, but did not increase the serum concentrations of a range of key cytokines or alter the cytokine producing potential of peripheral blood leukocytes. These findings strongly suggest that a cytokine is not likely to be the humoral mediator associated with transmitting the RIPC protective signal.  RIPC did not alter the immunophenotype or extravasation of peripheral leukocyte populations, or the proliferative and cytokine responses of peripheral blood mononuclear cells (PBMC) to pharmacological, physiological, and antigen-specific stimuli. However, preconditioning did appear to reduce the ability of monocytes and neutrophils to respond to activation signals, as indicated by lower levels of CD11b expression in stimulated cultures, and a significant increase in the basal production of IL-22 was also detected in PBMC cultured for 6 days following preconditioning. These alterations may reduce neutrophil and monocyte tissue infiltration and limit the inflammatory response during the early window of RIPC-induced protection and enhance tissue and wound repair several days later. A multivariate analysis confirmed that there was a significant difference in the response between the control and RIPC treatments and the main contributing factors were identified as changes in neutrophil and T cell activation, serum levels of MIP-1α and β, and production of IL-10 and IL-22 from PBMC cultured for 6 days.  Overall, our results suggest that RIPC has a subtle but direct effect on the systemic innate immune response during the early window of protection in healthy volunteers, whereas the effects on the adaptive immune system seem to be considerably delayed. The changes detected following RIPC are likely to contribute to protection against ischaemia-reperfusion injury but not solely account for the extent of the beneficial effects of RIPC detected in animals. Our findings reinforce the safety profile of this intervention and have defined a number of immune parameters that are altered by preconditioning for focusing future research.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Tiziana Ada Renzi ◽  
Marcello Rubino ◽  
Laura Gornati ◽  
Cecilia Garlanda ◽  
Massimo Locati ◽  
...  

A proper regulation of the innate immune response is fundamental to keep the immune system in check and avoid a chronic status of inflammation. As they act as negative modulators of TLR signaling pathways, miRNAs have been recently involved in the control of the inflammatory response. However, their role in the context of endotoxin tolerance is just beginning to be explored. We here show that miR-146b is upregulated in human monocytes tolerized by LPS, IL-10, or TGFβpriming and demonstrate that its transcription is driven by STAT3 and RUNX3, key factors downstream of IL-10 and TGFβsignaling. Our study also found that IFNγ, known to revert LPS tolerant state, inhibits miR-146b expression. Finally, we provide evidence that miR-146b levels have a profound effect on the tolerant state, thus candidating miR-146b as a molecular mediator of endotoxin tolerance.


2017 ◽  
Author(s):  
Chase Cockrell ◽  
Gary An

AbstractSepsis, a manifestation of the body’s inflammatory response to injury and infection, has a mortality rate of between 28%-50% and affects approximately 1 million patients annually in the United States. Currently, there are no therapies targeting the cellular/molecular processes driving sepsis that have demonstrated the ability to control this disease process in the clinical setting. We propose that this is in great part due to the considerable heterogeneity of the clinical trajectories that constitute clinical “sepsis,” and that determining how this system can be controlled back into a state of health requires the application of concepts drawn from the field of dynamical systems. In this work, we consider the human immune system to be a random dynamical system, and investigate its potential controllability using an agent-based model of the innate immune response (the Innate Immune Response ABM or IIRABM) as a surrogate, proxy system. Simulation experiments with the IIRABM provide an explanation as to why single/limited cytokine perturbations at a single, or small number of, time points is unlikely to significantly improve the mortality rate of sepsis. We then use genetic algorithms (GA) to explore and characterize multi-targeted control strategies for the random dynamical immune system that guide it from a persistent, non-recovering inflammatory state (functionally equivalent to the clinical states of systemic inflammatory response syndrome (SIRS) or sepsis) to a state of health. We train the GA on a single parameter set with multiple stochastic replicates, and show that while the calculated results show good generalizability, more advanced strategies are needed to achieve the goal of adaptive personalized medicine. This work evaluating the extent of interventions needed to control a simplified surrogate model of sepsis provides insight into the scope of the clinical challenge, and can serve as a guide on the path towards true “precision control” of sepsis.Author summarySepsis, characterized by the body’s inflammatory response to injury and infection, has a mortality rate of between 28%-50% and affects approximately 1 million patients annually in the United States. Currently, there are no therapies targeting the cellular/molecular processes driving sepsis that have demonstrated the ability to control this disease process. In this work, we utilize a computational model of the human immune response to infectious injury to offer an explanation as to why previously attempted treatment strategies are inadequate and why the current approach to drug/therapy-development is inadequate. We then use evolutionary computation algorithms to explore drug-intervention space using this same computational model. This allows us to characterize the scale and scope of interventions needed to successfully control sepsis, as well as the types of data needed to derive these interventions. We demonstrate that multi-point and time-dependent varying controls are necessary and able to control the cytokine network dynamics of the immune system.


Author(s):  
Abeer Iftikhar ◽  
Hamza Sohail

Heat stroke is the most calamitous consequence of environmental heat stress affecting every age group that can be traced back to more than 2000 years. It can be defined as a form of hyperthermia associated with a systemic inflammatory response leading to multiorgan dysfunction syndrome in which encephalopathy predominates. Based on its etiology, heat stroke can be divided into classic (resulting from exposure to high environmental temperatures) (called classic or non-exertional heat stroke) or exertional heat stroke (from strenuous exercise).


2021 ◽  
Author(s):  
◽  
Jennifer Mae Williams-Spence

<p>Remote ischaemic preconditioning (RIPC) describes the phenomenon where brief intermittent periods of limb ischaemia are used to protect the heart and other organs from subsequent prolonged ischaemic insults. RIPC has been identified as a promising intervention for use during cardiac surgery and has consistently shown a beneficial effect in animal models; however, the results of early clinical trials have not been as successful. The exact mechanisms involved in mediating RIPC have not yet been characterised and a better understanding of the pathways through which RIPC exerts its protective effects will be essential in order to progress the translation of this intervention into the clinical setting. There is increasing evidence that RIPC modifies the inflammatory response, therefore the central aim of the research presented in this thesis was to investigate how RIPC affects the human immune system.  We performed a double-blind randomised controlled trial of RIPC in 96 high-risk cardiac surgery patients and found no evidence that the intervention reduced myocardial injury or altered peri-operative expression levels of the key inflammatory cytokines, interleukin (IL)-6, IL-8, and IL-10, during simple or more complex procedures. There was a trend towards higher levels of IL-6 and IL-8 in the preconditioned patients; however, confounding variables in the trial design and the heterogeneous patient population limited our ability to interpret the results.  We next conducted a paired-analysis trial with 10 healthy male volunteers to assess the direct effect of preconditioning on the early immune response, away from any form of ischaemic injury or comorbidities. We found that RIPC directly and significantly decreased serum levels of the chemokines MIP-1α and MIP-1β, but did not increase the serum concentrations of a range of key cytokines or alter the cytokine producing potential of peripheral blood leukocytes. These findings strongly suggest that a cytokine is not likely to be the humoral mediator associated with transmitting the RIPC protective signal.  RIPC did not alter the immunophenotype or extravasation of peripheral leukocyte populations, or the proliferative and cytokine responses of peripheral blood mononuclear cells (PBMC) to pharmacological, physiological, and antigen-specific stimuli. However, preconditioning did appear to reduce the ability of monocytes and neutrophils to respond to activation signals, as indicated by lower levels of CD11b expression in stimulated cultures, and a significant increase in the basal production of IL-22 was also detected in PBMC cultured for 6 days following preconditioning. These alterations may reduce neutrophil and monocyte tissue infiltration and limit the inflammatory response during the early window of RIPC-induced protection and enhance tissue and wound repair several days later. A multivariate analysis confirmed that there was a significant difference in the response between the control and RIPC treatments and the main contributing factors were identified as changes in neutrophil and T cell activation, serum levels of MIP-1α and β, and production of IL-10 and IL-22 from PBMC cultured for 6 days.  Overall, our results suggest that RIPC has a subtle but direct effect on the systemic innate immune response during the early window of protection in healthy volunteers, whereas the effects on the adaptive immune system seem to be considerably delayed. The changes detected following RIPC are likely to contribute to protection against ischaemia-reperfusion injury but not solely account for the extent of the beneficial effects of RIPC detected in animals. Our findings reinforce the safety profile of this intervention and have defined a number of immune parameters that are altered by preconditioning for focusing future research.</p>


Sign in / Sign up

Export Citation Format

Share Document