scholarly journals Metabolic interaction between amino acid deprivation and cisplatin synergistically reduces phosphoribosyl-pyrophosphate and augments cisplatin cytotoxicity

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nisreen Wahwah ◽  
Debanjan Dhar ◽  
Hui Chen ◽  
Shunhui Zhuang ◽  
Adriano Chan ◽  
...  

AbstractCisplatin is a mainstay of cancer chemotherapy. It forms DNA adducts, thereby activating poly(ADP-ribose) polymerases (PARPs) to initiate DNA repair. The PARP substrate NAD+ is synthesized from 5-phosphoribose-1-pyrophosphate (PRPP), and we found that treating cells for 6 h with cisplatin reduced intracellular PRPP availability. The decrease in PRPP was likely from (1) increased PRPP consumption, because cisplatin increased protein PARylation and PARP1 shRNA knock-down returned PRPP towards normal, and (2) decreased intracellular phosphate, which down-regulated PRPP synthetase activity. Depriving cells of a single essential amino acid decreased PRPP synthetase activity with a half-life of ~ 8 h, and combining cisplatin and amino acid deprivation synergistically reduced intracellular PRPP. PRPP is a rate-limiting substrate for purine nucleotide synthesis, and cisplatin inhibited de novo purine synthesis and DNA synthesis, with amino acid deprivation augmenting cisplatin’s effects. Amino acid deprivation enhanced cisplatin’s cytotoxicity, increasing cellular apoptosis and DNA strand breaks in vitro, and intermittent deprivation of lysine combined with a sub-therapeutic dose of cisplatin inhibited growth of ectopic hepatomas in mice. Augmentation of cisplatin’s biochemical and cytotoxic effects by amino acid deprivation suggest that intermittent deprivation of an essential amino acid could allow dose reduction of cisplatin; this could reduce the drug’s side effects, and allow its use in cisplatin-resistant tumors.

2013 ◽  
Vol 454 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Alla Fridman ◽  
Arindam Saha ◽  
Adriano Chan ◽  
Darren E. Casteel ◽  
Renate B. Pilz ◽  
...  

Cells must increase synthesis of purine nucleotides/deoxynucleotides before or during S-phase. We found that rates of purine synthesis via the de novo and salvage pathways increased 5.0- and 3.3-fold respectively, as cells progressed from mid-G1-phase to early S-phase. The increased purine synthesis could be attributed to a 3.2-fold increase in intracellular PRPP (5-phosphoribosyl-α-1-pyrophosphate), a rate-limiting substrate for de novo and salvage purine synthesis. PRPP can be produced by the oxidative and non-oxidative pentose phosphate pathways, and we found a 3.1-fold increase in flow through the non-oxidative pathway, with no change in oxidative pathway activity. Non-oxidative pentose phosphate pathway enzymes showed no change in activity, but PRPP synthetase is regulated by phosphate, and we found that phosphate uptake and total intracellular phosphate concentration increased significantly between mid-G1-phase and early S-phase. Over the same time period, PRPP synthetase activity increased 2.5-fold when assayed in the absence of added phosphate, making enzyme activity dependent on cellular phosphate at the time of extraction. We conclude that purine synthesis increases as cells progress from G1- to S-phase, and that the increase is from heightened PRPP synthetase activity due to increased intracellular phosphate.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 955
Author(s):  
Jifu Li ◽  
Junhong Ye ◽  
Shunqin Zhu ◽  
Hongjuan Cui

Phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is a key enzyme in de novo nucleotide synthesis and nucleotide salvage synthesis pathways that are critical for purine and pyrimidine biosynthesis. Abnormally high expression of PRPS1 can cause many diseases, including hearing loss, hypotonia, and ataxia, in addition to being associated with neuroblastoma. However, the role of PRPS1 in neuroblastoma is still unclear. In this study, we found that PRPS1 was commonly expressed in neuroblastoma cells and was closely related to poor prognosis for cancer. Furthermore, down-regulation of PRPS1 inhibited neuroblastoma cell proliferation and tumor growth in vitro and in vivo via disturbing DNA synthesis. This study provides new insights into the treatment of neuroblastoma patients and new targets for drug development.


1978 ◽  
Vol 172 (3) ◽  
pp. 457-464 ◽  
Author(s):  
Stephen D. Skaper ◽  
William E. O'Brien ◽  
Irwin A. Schafer

1. The effect of ammonia on purine and pyrimidine nucleotide biosynthesis was studied in rat liver and brain in vitro. The incorporation of NaH14CO3 into acid-soluble uridine nucleotide (UMP) in liver homogenates and minces was increased 2.5–4-fold on incubation with 10mm-NH4Cl plus N-acetyl-l-glutamate, but not with either compound alone. 2. The incorporation of NaH14CO3 into orotic acid was increased 3–4-fold in liver homogenate with NH4Cl plus acetylglutamate. 3. The 5-phosphoribosyl 1-pyrophosphate content of liver homogenate was decreased by 50% after incubation for 10min with 10mm-NH4Cl plus acetylglutamate. 4. Concomitant with this decrease in free phosphoribosyl pyrophosphate was a 40–50% decrease in the rates of purine nucleotide synthesis, both de novo and from the preformed base. 5. Subcellular fractionation of liver indicated that the effects of NH4Cl plus acetylglutamate on pyrimidine and purine biosynthesis required a mitochondrial fraction. This effect of NH4Cl plus acetylglutamate could be duplicated in a mitochondria-free liver fraction with carbamoyl phosphate. 6. A similar series of experiments carried out with rat brain demonstrated a significant, though considerably smaller, effect on UMP synthesis de novo and purine base reutilization. 7. These data indicate that excessive amounts of ammonia may interfere with purine nucleotide biosynthesis by stimulating production of carbamoyl phosphate through the mitochondrial synthetase, with the excess carbamoyl phosphate in turn increasing pyrimidine nucleotide synthesis de novo and diminishing the phosphoribosyl pyrophosphate available for purine biosynthesis.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1469
Author(s):  
Patricia M. Rusu ◽  
Andrea Y. Chan ◽  
Mathias Heikenwalder ◽  
Oliver J. Müller ◽  
Adam J. Rose

Prior studies have reported that dietary protein dilution (DPD) or amino acid dilution promotes heightened water intake (i.e., hyperdipsia) however, the exact dietary requirements and the mechanism responsible for this effect are still unknown. Here, we show that dietary amino acid (AA) restriction is sufficient and required to drive hyperdipsia during DPD. Our studies demonstrate that particularly dietary essential AA (EAA) restriction, but not non-EAA, is responsible for the hyperdipsic effect of total dietary AA restriction (DAR). Additionally, by using diets with varying amounts of individual EAA under constant total AA supply, we demonstrate that restriction of threonine (Thr) or tryptophan (Trp) is mandatory and sufficient for the effects of DAR on hyperdipsia and that liver-derived fibroblast growth factor 21 (FGF21) is required for this hyperdipsic effect. Strikingly, artificially introducing Thr de novo biosynthesis in hepatocytes reversed hyperdipsia during DAR. In summary, our results show that the DPD effects on hyperdipsia are induced by the deprivation of Thr and Trp, and in turn, via liver/hepatocyte-derived FGF21.


1986 ◽  
Vol 238 (2) ◽  
pp. 553-559 ◽  
Author(s):  
S Kunjara ◽  
M Sochor ◽  
N Salih ◽  
P McLean ◽  
A L Greenbaum

Changes in the tissue content of phosphoribosyl pyrophosphate (PPRibP), glucose 6-phosphate, ribose 5-phosphate (Rib5P), RNA and DNA, of the activity of PPRibP synthetase (EC 2.7.6.1) and the conversion of [1-14C]- and [6-14C]-glucose into 14CO2 were measured at mid-lactation in the normal and diabetic rat and in pregnancy, lactation and mammary involution in the normal rat. The PPRibP, glucose 6-phosphate and Rib5P contents increase during pregnancy and early lactation to reach a plateau value at mid-lactation, before falling sharply during weaning. The PPRibP content, PPRibP synthetase activity and flux of glucose through the oxidative pentose phosphate pathway (PPP) all change in parallel during the lactation cycle. Similarly, after 3 and 5 days duration of streptozotocin-induced diabetes, ending on day 10 of lactation, there were parallel declines in PPRibP content, PPRibP synthetase and PPP activity. The effect of streptozotocin was prevented by pretreatment with nicotinamide and partially reversed by insulin administration. Addition of insulin to lactating rat mammary-gland slices incubated in vitro significantly raised the PPRibP content (+47%) and the activity of the PPP (+40%); phenazine methosulphate, which gives a 2-fold increase in PPP activity, raised the PPRibP content of lactating mammary gland slices by approx. 3-fold. It is concluded that Rib5P, generated in the oxidative segment of the PPP, is an important determinant of PPRibP synthesis in the lactating rat mammary gland and that insulin plays a central role in the regulation of the bioavailability of this precursor of nucleotide and nucleic acid synthesis.


1976 ◽  
Vol 35 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Turner ◽  
P. J. Reeds ◽  
K. A. Munday

1. Net amino acid uptake, and incorporation into protein have been measured in vitro in the presence and absence of porcine growth hormone (GH) in muscle from intact rabbits fed for 5 d on low-protein (LP), protein-free (PF) or control diets.2. In muscle from control and LP animals GH had no effect on the net amino acid uptake but stimulated amino acid incorporation into protein, although this response was less in LP animals than in control animals.3. In muscle from PF animals, GH stimulated both amino acid incorporation into protein and the net amino acid uptake, a type of response which also occurs in hypophysectomized animals. The magnitude of the effect of GH on the incorporation of amino acids into protein was reduced in muscle from PF animals.4. The effect of GH on the net amino acid uptake in PF animals was completely blocked by cycloheximide; the uptake effect of GH in these animals was dependent therefore on de novo protein synthesis.5. It is proposed that in the adult the role of growth hormone in protein metabolism is to sustain cellular protein synthesis when there is a decrease in the level of substrate amino acids, similar to that which occurs during a short-term fast or when the dietary protein intake is inadequate.


2020 ◽  
Vol 12 (547) ◽  
pp. eaay2163
Author(s):  
Madi Y. Cissé ◽  
Samuel Pyrdziak ◽  
Nelly Firmin ◽  
Laurie Gayte ◽  
Maud Heuillet ◽  
...  

Well-differentiated and dedifferentiated liposarcomas (LPSs) are characterized by a systematic amplification of the MDM2 oncogene, which encodes a key negative regulator of the p53 pathway. The molecular mechanisms underlying MDM2 overexpression while sparing wild-type p53 in LPS remain poorly understood. Here, we show that the p53-independent metabolic functions of chromatin-bound MDM2 are exacerbated in LPS and mediate an addiction to serine metabolism that sustains nucleotide synthesis and tumor growth. Treatment of LPS cells with Nutlin-3A, a pharmacological inhibitor of the MDM2-p53 interaction, stabilized p53 but unexpectedly enhanced MDM2-mediated control of serine metabolism by increasing its recruitment to chromatin, likely explaining the poor clinical efficacy of this class of MDM2 inhibitors. In contrast, genetic or pharmacological inhibition of chromatin-bound MDM2 by SP141, a distinct MDM2 inhibitor triggering its degradation, or interfering with de novo serine synthesis, impaired LPS growth both in vitro and in clinically relevant patient-derived xenograft models. Our data indicate that targeting MDM2 functions in serine metabolism represents a potential therapeutic strategy for LPS.


2002 ◽  
Vol 22 (15) ◽  
pp. 5575-5584 ◽  
Author(s):  
Tao Peng ◽  
Todd R. Golub ◽  
David M. Sabatini

ABSTRACT RAFT1/FRAP/mTOR is a key regulator of cell growth and division and the mammalian target of rapamycin, an immunosuppressive and anticancer drug. Rapamycin deprivation and nutrient deprivation have similar effects on the activity of S6 kinase 1 (S6K1) and 4E-BP1, two downstream effectors of RAFT1, but the relationship between nutrient- and rapamycin-sensitive pathways is unknown. Using transcriptional profiling, we show that, in human BJAB B-lymphoma cells and murine CTLL-2 T lymphocytes, rapamycin treatment affects the expression of many genes involved in nutrient and protein metabolism. The rapamycin-induced transcriptional profile is distinct from those induced by glucose, glutamine, or leucine deprivation but is most similar to that induced by amino acid deprivation. In particular, rapamycin treatment and amino acid deprivation up-regulate genes involved in nutrient catabolism and energy production and down-regulate genes participating in lipid and nucleotide synthesis and in protein synthesis, turnover, and folding. Surprisingly, however, rapamycin had effects opposite from those of amino acid starvation on the expression of a large group of genes involved in the synthesis, transport, and use of amino acids. Supported by measurements of nutrient use, the data suggest that RAFT1 is an energy and nutrient sensor and that rapamycin mimics a signal generated by the starvation of amino acids but that the signal is unlikely to be the absence of amino acids themselves. These observations underscore the importance of metabolism in controlling lymphocyte proliferation and offer a novel explanation for immunosuppression by rapamycin.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 678 ◽  
Author(s):  
Joseph A. Combs ◽  
Gina M. DeNicola

The non-essential amino acid cysteine is used within cells for multiple processes that rely on the chemistry of its thiol group. Under physiological conditions, many non-transformed tissues rely on glutathione, circulating cysteine, and the de novo cysteine synthesis (transsulfuration) pathway as sources of intracellular cysteine to support cellular processes. In contrast, many cancers require exogeneous cystine for proliferation and viability. Herein, we review how the cystine transporter, xCT, and exogenous cystine fuel cancer cell proliferation and the mechanisms that regulate xCT expression and activity. Further, we discuss the potential contribution of additional sources of cysteine to the cysteine pool and what is known about the essentiality of these processes in cancer cells. Finally, we discuss whether cyst(e)ine dependency and associated metabolic alterations represent therapeutically targetable metabolic vulnerabilities.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anshu Kumari ◽  
Kalpana Kumari ◽  
Sharad Gupta

AbstractDelivery of the theranostic agents with effective concentration to the desired sites inside the body is a major challenge in disease management. Nanotechnology has gained attention for the delivery of theranostic agents to the targeted location. The use of essential amino-acid based homopolymers for the synthesis of biocompatible and biodegradable nanoparticles (NPs) could serve as a nanocarrier for delivery applications. In this study, poly-l-lysine (PLL) and salts were used to fabricate the NPs for the delivery of exogenous contrast agents. Here, indocyanine green (ICG) was encapsulated within these NPs, and a simple two-step green chemistry-based self-assembly process was used for the fabrication. The morphological and biochemical characterizations confirm the formation of ICG encapsulating spherical PLL NPs with an average diameter of ~225 nm. Further, a detailed study has been carried out to understand the role of constituents in the assembly mechanism of PLL NPs. Our results show a controlled release of the ICG from PLL NPs in the presence of the proteolytic enzyme. In-vitro cellular studies suggest that the PLL NPs were readily taken up by the cells showing their superior delivery efficiency of ICG in comparison to the free-form of the ICG.


Sign in / Sign up

Export Citation Format

Share Document