scholarly journals A record of vapour pressure deficit preserved in wood and soil across biomes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adrian Broz ◽  
Gregory J. Retallack ◽  
Toby M. Maxwell ◽  
Lucas C. R. Silva

AbstractThe drying power of air, or vapour pressure deficit (VPD), is an important measurement of potential plant stress and productivity. Estimates of VPD values of the past are integral for understanding the link between rising modern atmospheric carbon dioxide (pCO2) and global water balance. A geological record of VPD is needed for paleoclimate studies of past greenhouse spikes which attempt to constrain future climate, but at present there are few quantitative atmospheric moisture proxies that can be applied to fossil material. Here we show that VPD leaves a permanent record in the slope (S) of least-squares regressions between stable isotope ratios of carbon and oxygen (13C and 18O) found in cellulose and pedogenic carbonate. Using previously published data collected across four continents we show that S can be used to reconstruct VPD within and across biomes. As one application, we used S to estimate VPD of 0.46 kPa ± 0.26 kPa for cellulose preserved tens of millions of years ago—in the Eocene (45 Ma) Metasequoia from Axel Heiberg Island, Canada—and 0.82 kPa ± 0.52 kPa—in the Oligocene (26 Ma) for pedogenic carbonate from Oregon, USA—both of which are consistent with existing records at those locations. Finally, we discuss mechanisms that contribute to the positive correlation observed between VPD and S, which could help reconstruct past climatic conditions and constrain future alterations of global carbon and water cycles resulting from modern climate change.

2009 ◽  
Vol 5 (2) ◽  
pp. 1231-1258 ◽  
Author(s):  
Y. Wang ◽  
N. T. Roulet ◽  
S. Frolking ◽  
L. A. Mysak

Abstract. We applied an inverse model to simulate global carbon (C) cycle dynamics during the Holocene period using atmospheric carbon dioxide (CO2) concentrations reconstructed from Antarctic ice cores and prescribed C accumulation rates of Northern Peatlands (NP) as inputs. Previous studies indicated that different sources could contribute to the 20 parts per million by volume (ppmv) atmospheric CO2 increase over the past 8000 years. These sources of C include terrestrial release of 40–200 petagram C (PgC, 1 petagram=1015 gram), deep oceanic adjustment to a 500 PgC terrestrial biomass buildup early in this interglacial period, and anthropogenic land-use and land-cover changes of unknown magnitudes. Our study shows that the prescribed peatland C accumulation significantly modifies our previous understanding of Holocene C cycle dynamics. If the buildup of the NP is considered, the terrestrial pool becomes the C sink of about 160–280 PgC over the past 8000 years, and the only C source for the terrestrial and atmospheric C increases is presumably from the deep ocean due to calcium carbonate compensation. Future studies need to be conducted to constrain the basal times and growth rates of the NP C accumulation in the Holocene. These research endeavors are challenging because they need a dynamically-coupled peatland simulator to be constrained with the initiation time and reconstructed C reservoir of the NP. Our results also suggest that the huge reservoir of deep ocean C explains the major variability of the glacial-interglacial C cycle dynamics without considering the anthropogenic C perturbation.


1996 ◽  
Vol 23 (5) ◽  
pp. 561 ◽  
Author(s):  
Hehui Zhang ◽  
PS Nobel

The leaf transpiration efficiency (A/E, where A is the assimilation rate and E the transpiration rate) is widely used to evaluate plant responses to the environment, yet little attention has been paid to its relationship with vapour pressure deficit (D), the driving force for E. The proposed model is based on the increasingly recognised linear relationship between the ratio of intercellular to ambient CO2 partial pressures (cI/ca) and D. Unlike previous models for A/E, the proposed model does not assume that the leaf and air temperatures are the same or that ci/ca is constant. A/E predicted by the model agreed with that measured for the C3 Encelia farinosa and the C4 Pleuraphis rigida, common species in the north-westem Sonoran Desert, based on gas exchange measured in the field and in environmental chambers. The dependency of cI/ca and A/E on D was additionally evaluated using published data for five other C3 species and two other C4 species. Generally, ci/ca was more sensitive to changes in D for the C4 species than the C3 species. The predictions for A/E by the model were also compared with predictions using a constant ci/ca, either a general cI/ca (0.7 for C3 and 0.3 for C4) or a species-dependent mean cI/ca. Overall, the proposed model performed best for both the C3 and C4 species; using the general cI/ca always resulted in an over-prediction of A/E.


2021 ◽  
Vol 23 (4) ◽  
pp. 381-388
Author(s):  
MAHESH CHAND SINGH ◽  
J. P. SINGH ◽  
K. G. SINGH ◽  
O. P. GUPTA ◽  
G. KUMAR

The plant water or nutrient requirement under greenhouse conditions is mainly governed by crop transpiration in a linear relation to vapour pressure deficit (VPD), particularly in soilless production systems. Being a cooling process in plants, transpiration governs the plant water requirement in relation to the subjected microclimatic conditions and VPD can be used as a tool to maintain greenhouse crop transpiration to optimal range for obtaining desired crop yields. Thus, the present investigation was undertaken to study the integrated effect of temperature (Tapc), relative humidity (Eapc) and solar radiation (Irad) on VPD and crop transpiration. A computer module was developed to monitor the behavior of the VPD and thereby the crop transpiration through charts under greenhouse conditions. The VPD indicated a linear increasing trend with Tapc (R2≥0.84) and decreasing trend with Eapc (R2=0.99), demonstrating a strong correlation in both cases. The increasing crop transpiration with VPD, particularly under hot climatic conditions significantly increased the input water and nutrient requirements of the crop. Thus, transpiration in relation to VPD should be considered as a factor for fertigation scheduling and improving irrigation control in soilless systems. Moreover, maintaining Tapc, Eapc and VPD within range of 22-27°C, 60-80% and 0.53-1.10 kPa may help to control the crop transpiration, manage the greenhouse irrigation and fertigation, and thus improve the cucumber yield.


Agriculture ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 68 ◽  
Author(s):  
Nina Maximova ◽  
Komali Kantamaneni ◽  
Gennady Morkovkin ◽  
Darya Arnaut ◽  
Louis Rice

This research examines the transformation of the agro-climatic conditions of the Altai region as a result of climate change. The climate of the Altai region in Russia is sharply continental and characterized by dry air and significant weather variability, both in individual seasons and years. The current study is determined by the lack of detailed area-related analytical generalizations for the territory of the Altai region over the past 30 years. Most of the published data dealing with an integrated analysis of the agro-climatic conditions in the Altai region date back to the late 1960s and early 1970s; in most cases, this data is from climate reference-books based on the generalized data from the first half of the 20th century. To make accurate forecasts and to efficiently manage agricultural production in the Altai region, area-related data on the state and dynamics of agro-climatic changes have been analysed. The results reveal that in the period between 1964 and 2017, significant climatic changes occurred in the territory of the Altai region. These climatic changes affected the growing season length, which increased due to a shift in the dates of the air temperature transition above 10 °C, to earlier dates in spring and to later dates in autumn. Furthermore, the current study also revealed that the foothills of the Altai Mountains are the most moistened parts of the region and the Kulunda lowland is the most arid part. In the Altai region, the accumulated temperatures and amounts of precipitation during the growing season increased significantly, and the values of integrated coefficients and indices that reflect the moisture supply conditions for the territory also changed significantly. Based upon the results, a schematic map of the current precipitation distribution on the Altai region’s territory has been generated. These results and this map may be used to conduct more detailed studies in the field of agro-climatology and to update the current borders of agro-climatic areas and revision of the agro-climatic zonation scheme.


2009 ◽  
Vol 5 (4) ◽  
pp. 683-693 ◽  
Author(s):  
Y. Wang ◽  
N. T. Roulet ◽  
S. Frolking ◽  
L. A. Mysak

Abstract. We applied an inverse model to simulate global carbon (C) cycle dynamics during the Holocene period using atmospheric carbon dioxide (CO2) concentrations reconstructed from Antarctic ice cores and prescribed C accumulation rates of Northern Peatlands (NP) as inputs. Previous studies indicated that different sources could contribute to the 20 parts per million by volume (ppmv) atmospheric CO2 increase over the past 8000 years. These sources of C include terrestrial release of 40–200 petagram C (PgC, 1 petagram=1015 gram), deep oceanic adjustment to a 500 PgC terrestrial biomass buildup early in this interglacial period, and anthropogenic land-use and land-cover changes of unknown magnitudes. Our study shows that the prescribed peatland C accumulation significantly modifies our previous understanding of Holocene C cycle dynamics. If the buildup of the NP is considered, the terrestrial pool becomes the C sink of about 160–280 PgC over the past 8000 years, and the only C source for the terrestrial and atmospheric C increases is presumably from the deep ocean due to calcium carbonate compensation. Future studies need to be conducted to constrain the basal times and growth rates of the NP C accumulation in the Holocene. These research endeavors are challenging because they need a dynamically-coupled peatland simulator to be constrained with the initiation time and reconstructed C reservoir of the NP. Our results also suggest that the huge reservoir of deep ocean C explains the major variability of the glacial-interglacial C cycle dynamics without considering the anthropogenic C perturbation.


The Holocene ◽  
2020 ◽  
Vol 30 (7) ◽  
pp. 1091-1096 ◽  
Author(s):  
Eleanor MB Pereboom ◽  
Richard S Vachula ◽  
Yongsong Huang ◽  
James Russell

Wildfires in the Arctic tundra have become increasingly frequent in recent years and have important implications for tundra ecosystems and for the global carbon cycle. Lake sediment–based records are the primary means of understanding the climatic influences on tundra fires. Sedimentary charcoal has been used to infer climate-driven changes in tundra fire frequency but thus far cannot differentiate characteristics of the vegetation burnt during fire events. In forested ecosystems, charcoal morphologies have been used to distinguish changes in fuel type consumed by wildfires of the past; however, no such approach has been developed for tundra ecosystems. We show experimentally that charcoal morphologies can be used to differentiate graminoid (mean = 6.77; standard deviation (SD) = 0.23) and shrub (mean = 2.42; SD = 1.86) biomass burnt in tundra fire records. This study is a first step needed to construct more nuanced tundra wildfire histories and to understand how wildfire will impact the region as vegetation and fire change in the future.


Science ◽  
2013 ◽  
Vol 341 (6150) ◽  
pp. 1085-1089 ◽  
Author(s):  
H. D. Graven ◽  
R. F. Keeling ◽  
S. C. Piper ◽  
P. K. Patra ◽  
B. B. Stephens ◽  
...  

Seasonal variations of atmospheric carbon dioxide (CO2) in the Northern Hemisphere have increased since the 1950s, but sparse observations have prevented a clear assessment of the patterns of long-term change and the underlying mechanisms. We compare recent aircraft-based observations of CO2 above the North Pacific and Arctic Oceans to earlier data from 1958 to 1961 and find that the seasonal amplitude at altitudes of 3 to 6 km increased by 50% for 45° to 90°N but by less than 25% for 10° to 45°N. An increase of 30 to 60% in the seasonal exchange of CO2 by northern extratropical land ecosystems, focused on boreal forests, is implicated, substantially more than simulated by current land ecosystem models. The observations appear to signal large ecological changes in northern forests and a major shift in the global carbon cycle.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 626
Author(s):  
Ramya Gupta ◽  
Abhishek Prasad ◽  
Suresh Babu ◽  
Gitanjali Yadav

A global event such as the COVID-19 crisis presents new, often unexpected responses that are fascinating to investigate from both scientific and social standpoints. Despite several documented similarities, the coronavirus pandemic is clearly distinct from the 1918 flu pandemic in terms of our exponentially increased, almost instantaneous ability to access/share information, offering an unprecedented opportunity to visualise rippling effects of global events across space and time. Personal devices provide “big data” on people’s movement, the environment and economic trends, while access to the unprecedented flurry in scientific publications and media posts provides a measure of the response of the educated world to the crisis. Most bibliometric (co-authorship, co-citation, or bibliographic coupling) analyses ignore the time dimension, but COVID-19 has made it possible to perform a detailed temporal investigation into the pandemic. Here, we report a comprehensive network analysis based on more than 20,000 published documents on viral epidemics, authored by over 75,000 individuals from 140 nations in the past one year of the crisis. Unlike the 1918 flu pandemic, access to published data over the past two decades enabled a comparison of publishing trends between the ongoing COVID-19 pandemic and those of the 2003 SARS epidemic to study changes in thematic foci and societal pressures dictating research over the course of a crisis.


Author(s):  
Tehreem Naveed ◽  
Rehan Zahid ◽  
Riaz Ahmad Mufti ◽  
Muhammad Waqas ◽  
Muhammad Talha Hanif

All the moving components in an internal combustion engine require a lubricant that allows smooth sliding and/or rolling of interacting surfaces. Lubricant not only minimizes the friction and wear but also dissipates the heat generated due to friction and removes debris from the area of contact. Environmental concerns, decreasing mineral oil reserves and difficult disposal of nonbiodegradable conventional lubricants have urged the researchers to shift towards environmental-friendly lubricants. Number of tribological studies carried out in the past have proved that ionic liquid-based bio-lubricants are sustainable and biodegradable alternative to mineral oils. This paper presents a brief review of properties of ionic liquids and their ability to reduce friction and wear between the interacting surfaces. Tribological performance and compatibility of ionic liquids with various base-oils have been compared under boundary lubrication. The results reveal that phosphonium-based ionic liquids namely tetra-decyl tri-hexyl phosphonium bis(2,4,4-trimethylpentyl) phosphinate (P66614)i(C8)2PO2 and tri-hexyl tetra-decyl phosphonium bis(2-ethylhexyl) phosphate (P-DEHP) are more suitable for tribological applications. Since, ionic liquids can be tailored according to the application and millions of combinations are possible therefore, there is a need to summarize the published data in a more systematic and logical way.


CFD letters ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 13-27
Author(s):  
Mohamad Lutfi Samsudin ◽  
Hasril Hasini

Meshing of domain in CFD is an important step to ensure accuracy of the solution. In the past, hexahedral or tetrahedral mesh systems were commonly used, and both have their merits and demerits. For large and complex geometry, polyhedral is another option but its accuracy is claimed to be lacking. In this paper, the use of polyhedral mesh system by past researchers are reviewed. Evaluation on the application of polyhedral mesh system for the study of the vortex formation with a simple single pump sump model is made. Validation was made through the comparison of the results from hexahedral, tetrahedral and polyhedral mesh sizes and the experimental data from published data. The polyhedral mesh system was found to perform satisfactorily and was able to match the results from the hexahedral mesh system as well as the experimental data.


Sign in / Sign up

Export Citation Format

Share Document