scholarly journals An age stratified analysis of the biomarkers in patients with colorectal cancer

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hui Yao ◽  
Chengjie Li ◽  
Xiaodong Tan

AbstractColorectal cancer (CRC), a common malignant tumor of the digestive tract, has a high incidence and mortality rate. Several recent studies have found that aging is associated with the increasing risk of cancer. Nevertheless, the expression status and function of age-related genes in CRC is still not well understood. In the study, we comprehensively analyzed the gene expression data of CRC patients from The Cancer Genome Atlas (TCGA) database. Age-related differential expression genes (age-related DEGs) in tumor tissues compared with normal tissues of CRC were further identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of age-related DEGs were performed by clusterProfiler of R. Afterwards, we used the STRING database to map the protein–protein interaction network of DEGs. We constructed prognostic model through univariate and multivariate COX regression analyses, and further evaluated their predictive power. The prognostic gene signature-related functional pathways were explored by gene set enrichment analysis (GSEA). The weighted gene co-expression network analysis (WGCNA) was used to identify key module associated with two prognostic gene signatures. Finally, we used the Metascape to perform functional enrichment analysis of genes in the key module. A total of 279 age-related DEGs were identified from the TCGA database. GO and KEGG enrichment analysis showed that the age-related DEGs were enriched in the Modulation of chemical synaptic transmission and Neuroactive ligand–receptor interaction. Moreover, we established a novel age-related gene signature (DLX2 and PCOLCE2) for overall survival in CRC, which was further predicted in both the training and validation sets. The results of GSEA demonstrated that numerous disease-related pathways were enriched in the high-risk group. We identified 43 genes related to the DLX2 and PCOLCE2 by the WGCNA co-expression network. We also found that these 43 genes were enriched in the cancer-related pathways. To sum up, the study identified an age-related gene signature for predicting the prognosis of CRC patients, which is conducive to the identification of novel prognostic molecular markers.

2021 ◽  
Author(s):  
Jian Li ◽  
Yang Liu ◽  
Fei Liu ◽  
Qiang Tian ◽  
Baojiang Li ◽  
...  

Abstract It is well known that Breast cancer is a heterogeneous disease.Although the current recurrence and mortality rate have been greatly improved, many people still suffer relapse and metastasis.Metabolic reprograming is currently considered to be a new hallmark of cancer.Therefore,in this study, we comprehensively analyzed the prognostic effect of metabolic-related gene signatures in breast cancer and its relationship with the immune microenvironment.We constructed a novel metabolic-related gene signature containing 6 genes to distinguish between high and low risk groups by univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression, and validated its robustness and accuracy through multiple databases.The metabolic gene signature may be an independent risk factor for BC both in the training and the testing set,the nomogram has a moderately accurate performance,and the C index was 0.757 and 0.728 respectively.The signature can reveal metabolic characteristics based on gene set enrichment analysis and at the same time monitor the status of TME.This gene signature can be used as a promising independent prognostic marker for BC patients, and can indicate the current status of TME, providing more clues for exploring new diagnostic and treatment strategies.


2020 ◽  
Author(s):  
Zhixiang Chen ◽  
Luya Ye ◽  
Xuechun Wang ◽  
Fuquan Tu ◽  
Xuezhen Li ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) is a common hematologic malignancy with poor prognosis. Accumulating reports have indicated that the tumor microenvironment (TME) performs a critical role in the progress of the disease and the clinical outcomes of patients. To date, the role of TME in AML remains clouded due to the complex regulatory mechanisms in it. In this study, We identified key prognostic genes relate to TME in AML and developed a novel gene signature for individualized prognosis assessment. Methods: The expression profiles of AML samples with clinical information were obtained from the Cancer Genome Atlas (TCGA). The ESTIMATE algorithm was applied to calculate the TME relevant immune and stromal scores. The differentially expressed genes (DEGs) were selected based on the immune and stromal scores. Then, the survival analysis was applied to select prognostic DEGs, and these genes were annotated by functional enrichment analysis. A TME relevant gene signature with predictive capability was constructed by a series of regression analyses and performed well in another cohort from the Gene Expression Omnibus (GEO) database. Moreover, we also developed a nomogram with the integration of the gene signature and clinical indicators to establish an individually quantified risk-scoring system. Results: In the AML microenvironment, a total of 181 DEGs with prognostic value were clarified. Then a seven-gene ( IL1R2, MX1, S100A4, GNGT2, ZSCAN23, PLXNB1 and DPY19L2 ) signature with robust prediction was identified, and was validated by an independent cohort of AML samples from the GSE71014. Gene set enrichment analysis (GSEA) of genes in the gene signature revealed these genes mainly enriched in the immune and inflammatory related processes. The correlation between the signature-calculated risk scores and the clinical features indicated that patients with high risk scores were accompanied by adverse survival. Finally, a nomogram with clinical utility was constructed. Conclusion: Our study explored and identified a novel TME relevant seven-gene signature, which could serve as a prognostic indicator for AML. Meanwhile, we also establish a nomogram with clinical significance. These findings might provide new insights into the diagnosis, treatment and prognosis of AML.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zizhen Zhang ◽  
Sheng Zheng ◽  
Yifeng Lin ◽  
Jiawei Sun ◽  
Ning Ding ◽  
...  

Abstract Background The epithelial-mesenchymal transition (EMT) plays a pivotal role in various physiological processes, such as embryonic development, tissue morphogenesis, and wound healing. EMT also plays an important role in cancer invasion, metastasis, and chemoresistance. Additionally, EMT is partially responsible for chemoresistance in colorectal cancer (CRC). The aim of this research is to develop an EMT-based prognostic signature in CRC. Methods RNA-seq and microarray data, together with clinical information, were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. A total of 244 differentially expressed EMT-related genes (ERGs) were obtained by comparing the expression between normal and tumor tissues. An EMT-related signature of 11 genes was identified as crucially related to the overall survival (OS) of patients through univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO), and Cox regression analysis. Finally, we established a clinical nomogram to predict the survival possibility of CRC patients by integrating clinical characteristics and the EMT-related gene signature. Results Two hundred and forty-four differentially expressed ERGs and their enriched pathways were confirmed. Significant enrichment analysis revealed that EMT-related signaling pathway genes were highly related to CRC. Kaplan-Meier analysis revealed that the 11-EMT signature could significantly distinguish high- and low-risk patients in both TCGA and GEO CRC cohorts. In addition, the calibration curves verified fine concordance between the nomogram prediction model and actual observation. Conclusion We developed a novel EMT-related gene signature for the prognosis prediction of CRC patients, which could improve the individualized outcome prediction in CRC.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 488
Author(s):  
Yoshihisa Tokumaru ◽  
Masanori Oshi ◽  
Ankit Patel ◽  
Wanqing Tian ◽  
Li Yan ◽  
...  

The colon adenoma–carcinoma sequence is a multistep genomic-altering process that occurs during colorectal cancer (CRC) carcinogenesis. Organoids are now commonly used to model both non-cancerous and cancerous tissue. This study aims to investigate how well organoids mimic tissues in the adenoma–carcinoma sequence by comparing their transcriptomes. A total of 234 tissue samples (48 adenomas and 186 CRC) and 60 organoid samples (15 adenomas and 45 CRC) were analyzed. We found that cell-proliferation-related gene sets were consistently enriched in both CRC tissues and organoids compared to adenoma tissues and organoids by gene set enrichment analysis (GSEA). None of the known pathways in the colon adenoma–carcinoma sequence were consistently enriched in CRC organoids. There was no enrichment of the tumor microenvironment-related gene sets in CRC organoids. CRC tissues enriched immune-response-related gene sets, whereas CRC organoids did not. The proportions of infiltrating immune cells were different between tissues and organoids, whereas there was no difference between cancer and adenoma organoids. The amounts of cancer stem cells and progenitor cells were not different between CRC and adenoma organoids, whereas a difference was noted between CRC and adenoma tissues. In conclusion, we demonstrated that organoids model only part of the adenoma–carcinoma sequence and should be used with caution after considering their limitations.


2020 ◽  
Author(s):  
Chen Zhang ◽  
Xin Gou ◽  
Weiyang He ◽  
Huaan Yang ◽  
Hubin Yin

Abstract Background: Bladder cancer is one of the most prevalent malignancies worldwide. However, traditional indicators have limited predictive effects on the clinical outcomes of bladder cancer. The aim of this study was to develop and validate a glycolysis-related gene signature for predicting the prognosis of patients with bladder cancer that have limited therapeutic options.Methods: mRNA expression profiling was obtained from patients with bladder cancer from The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was conducted to identify glycolytic gene sets that were significantly different between bladder cancer tissues and paired normal tissues. A prognosis-related gene signature was constructed by univariate and multivariate Cox analysis. Kaplan-Meier curves and time-dependent receiver operating characteristic (ROC) curves were utilized to evaluate the signature. A nomogram combined with the gene signature and clinical parameters was constructed. Correlations between glycolysis-related gene signature and molecular characterization as well as cancer subtypes were analyzed. RT-qPCR was applied to analyze gene expression. Functional experiments were performed to determine the role of PKM2 in the proliferation of bladder cancer cells.Results: Using a Cox proportional regression model, we established that a 4-mRNA signature (NUP205, NUPL2, PFKFB1 and PKM) was significantly associated with prognosis in bladder cancer patients. Based on the signature, patients were split into high and low risk groups, with different prognostic outcomes. The gene signature was an independent prognostic indicator for overall survival. The ability of the 4-mRNA signature to make an accurate prognosis was tested in two other validation datasets. GSEA was performed to explore the 4-mRNA related canonical pathways and biological processes, such as the cell cycle, hypoxia, p53 pathway, and PI3K/AKT/mTOR pathway. A heatmap showing the correlation between risk score and cell cycle signature was generated. RT-qPCR revealed the genes that were differentially expressed between normal and cancer tissues. Experiments showed that PKM2 plays essential roles in cell proliferation and the cell cycle.Conclusion: The established 4‑mRNA signature may act as a promising model for generating accurate prognoses for patients with bladder cancer, but the specific biological mechanism needs further verification.


2020 ◽  
Vol 7 ◽  
Author(s):  
Mingde Cao ◽  
Junhui Zhang ◽  
Hualiang Xu ◽  
Zhujian Lin ◽  
Hong Chang ◽  
...  

Osteosarcoma (OS) is a malignant disease that develops rapidly and is associated with poor prognosis. Immunotherapy may provide new insights into clinical treatment strategies for OS. The purpose of this study was to identify immune-related genes that could predict OS prognosis. The gene expression profiles and clinical data of 84 OS patients were obtained from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. According to non-negative matrix factorization, two molecular subtypes of immune-related genes, C1 and C2, were acquired, and 597 differentially expressed genes between C1 and C2 were identified. Univariate Cox analysis was performed to get 14 genes associated with survival, and 4 genes (GJA5, APBB1IP, NPC2, and FKBP11) obtained through least absolute shrinkage and selection operator (LASSO)-Cox regression were used to construct a 4-gene signature as a prognostic risk model. The results showed that high FKBP11 expression was correlated with high risk (a risk factor), and that high GJA5, APBB1IP, or NPC2 expression was associated with low risk (protective factors). The testing cohort and entire TARGET cohort were used for internal verification, and the independent GSE21257 cohort was used for external validation. The study suggested that the model we constructed was reliable and performed well in predicting OS risk. The functional enrichment of the signature was studied through gene set enrichment analysis, and it was found that the risk score was related to the immune pathway. In summary, our comprehensive study found that the 4-gene signature could be used to predict OS prognosis, and new biomarkers of great significance for understanding the therapeutic targets of OS were identified.


Author(s):  
Weijie Zou ◽  
Li Chen ◽  
Wenwen Mao ◽  
Su Hu ◽  
Yuanqing Liu ◽  
...  

Background: Lung adenocarcinoma (LUAD) is an exceedingly diverse disease, making prognostication difficult. Inflammatory responses in the tumor or the tumor microenvironment can alter prognosis in the process of the ongoing cross-talk between the host and the tumor. Nonetheless, Inflammatory response-related genes’ prognostic significance in LUAD, on the other hand, has yet to be determined.Materials and Methods: The clinical data as well as the mRNA expression patterns of LUAD patients were obtained from a public dataset for this investigation. In the TCGA group, a multigene prognostic signature was built utilizing LASSO Cox analysis. Validation was executed on LUAD patients from the GEO cohort. The overall survival (OS) of low- and high-risk cohorts was compared utilizing the Kaplan-Meier analysis. The assessment of independent predictors of OS was carried out utilizing multivariate and univariate Cox analyses. The immune-associated pathway activity and immune cell infiltration score were computed utilizing single-sample gene set enrichment analysis. GO keywords and KEGG pathways were explored utilizing gene set enrichment analysis.Results: LASSO Cox regression analysis was employed to create an inflammatory response-related gene signature model. The high-risk cohort patients exhibited a considerably shorter OS as opposed to those in the low-risk cohort. The prognostic gene signature’s predictive ability was demonstrated using receiver operating characteristic curve analysis. The risk score was found to be an independent predictor of OS using multivariate Cox analysis. The functional analysis illustrated that the immune status and cancer-related pathways for the two-risk cohorts were clearly different. The tumor stage and kind of immune infiltrate were found to be substantially linked with the risk score. Furthermore, the cancer cells’ susceptibility to anti-tumor medication was substantially associated with the prognostic genes expression levels.Conclusion: In LUAD, a new signature made up of 8 inflammatory response-related genes may be utilized to forecast prognosis and influence immunological state. Inhibition of these genes could also be used as a treatment option.


2021 ◽  
Author(s):  
Min-Yi Lv ◽  
Wei Wang ◽  
Min-Er Zhong ◽  
Du Cai ◽  
Dejun Fan ◽  
...  

Abstract Background: Increasing evidence has depicted that DNA repair-related genes (DRGs) are associated with the prognosis of colorectal cancer (CRC) patients. Thus, the aim of this study was to evaluate the impact of DNA repair-related gene signature (DRGS) in predicting the prognosis of CRC patients.Method: In this study, we retrospectively analyzed the gene expression profiles from six CRC cohorts. A total of 1,768 CRC patients with complete prognostic information were divided into training cohort (n=566) and 2 validation cohorts (n=624 and 578, respectively). LASSO-Cox model was applied to construct a prediction model.Results: Among 1,376 DRGs, a prognostic DRGS consisting of 11 distinct genes stratified patients into high and low -risk groups. In all cohorts, patients in the high -risk groups had significantly worse disease-free survival (DFS) compared with those in the low-risk groups (training cohort: hazard ratio (HR) = 2.40, 95% confidence interval (CI) = 1.67-3.44, P < 0.001; validation-1: HR = 2.20, 95% CI = 1.38-3.49, P < 0.001; validation-2 cohort: HR = 2.12, 95% CI = 1.40-3.21, P < 0.001). After adjusting for clinical features and molecular types, DRGS still remained as an independent prognostic marker in multivariable analysis (training cohort: HR = 1.80; 95% CI = 1.22-2.64, P = 0.0028; validation-1: HR = 1.85, 95% CI = 1.13-3.02, P = 0.015; validation-2 cohort: HR = 1.75, 95% CI = 1.15-2.65, P = 0.0085). Gene Set Enrichment Analysis (GSEA) showed significant dysregulated pathways in the high-risk involved in angiogenesis, KRAS signaling, epithelial mesenchymal transit (EMT) and myogenesis (P < 0.001).Conclusions: DNA repair-related gene signature is a favorable prognostic model for patients with CRC, and further studies are necessary to validate the exact biological mechanism.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9847
Author(s):  
Yandong Miao ◽  
Qiutian Li ◽  
Jiangtao Wang ◽  
Wuxia Quan ◽  
Chen Li ◽  
...  

Colorectal cancer (CRC) is one of the most common and deadly malignancies. Novel biomarkers for the diagnosis and prognosis of this disease must be identified. Besides, metabolism plays an essential role in the occurrence and development of CRC. This article aims to identify some critical prognosis-related metabolic genes (PRMGs) and construct a prognosis model of CRC patients for clinical use. We obtained the expression profiles of CRC from The Cancer Genome Atlas database (TCGA), then identified differentially expressed PRMGs by R and Perl software. Hub genes were filtered out by univariate Cox analysis and least absolute shrinkage and selection operator Cox analysis. We used functional enrichment analysis methods, such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis, to identify involved signaling pathways of PRMGs. The nomogram predicted overall survival (OS). Calibration traces were used to evaluate the consistency between the actual and the predicted survival rate. Finally, a prognostic model was constructed based on six metabolic genes (NAT2, XDH, GPX3, AKR1C4, SPHK1, and ADCY5), and the risk score was an independent prognostic prognosticator. Genetic expression and risk score were significantly correlated with clinicopathologic characteristics of CRC. A nomogram based on the clinicopathological feature of CRC and risk score accurately predicted the OS of individual CRC cancer patients. We also validated the results in the independent colorectal cancer cohorts GSE39582 and GSE87211. Our study demonstrates that the risk score is an independent prognostic biomarker and is closely correlated with the malignant clinicopathological characteristics of CRC patients. We also determined some metabolic genes associated with the survival and clinical stage of CRC as potential biomarkers for CRC diagnosis and treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mingshuang Li ◽  
Conglin Ren ◽  
Chenxia Wu ◽  
Xinyao Li ◽  
Xinyi Li ◽  
...  

Background. Acute coronary syndrome (ACS) has a high incidence and mortality rate. Early detection and intervention would provide clinical benefits. This study aimed to reveal hub genes, transcription factors (TFs), and microRNAs (miRNAs) that affect plaque stability and provide the possibility for the early diagnosis and treatment of ACS. Methods. We obtained gene expression matrix GSE19339 for ACS patients and healthy subjects from public database. The differentially expressed genes (DEGs) were screened using Limma package in R software. The biological functions of DEGs were shown by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Protein-protein interaction (PPI) network was mapped in Cytoscape, followed by screening of hub genes based on the Molecular Complex Detection (MCODE) plug-in. Functional Enrichment analysis tool (FunRich) and Database for Annotation, Visualization and Integrated Discovery (DAVID) were used to predict miRNAs and TFs, respectively. Finally, GSE60993 expression matrix was chosen to plot receiver operating characteristic (ROC) curves with the aim of further assessing the reliability of our findings. Results. We obtained 176 DEGs and further identified 16 hub genes by MCODE. The results of functional enrichment analysis showed that DEGs mediated inflammatory response and immune-related pathways. Among the predicted miRNAs, hsa-miR-4770, hsa-miR-5195, and hsa-miR-6088 all possessed two target genes, which might be closely related to the development of ACS. Moreover, we identified 11 TFs regulating hub gene transcriptional processes. Finally, ROC curves confirmed three genes with high confidence (area under the curve > 0.9), including VEGFA, SPP1, and VCAM1. Conclusion. This study suggests that three genes (VEGFA, SPP1, and VCAM1) were involved in the molecular mechanisms of ACS pathogenesis and could serve as biomarkers of disease progression.


Sign in / Sign up

Export Citation Format

Share Document