scholarly journals Investigation of biological activity of soil fungal extracts and LC/MS-QTOF based metabolite profiling

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Afrah E. Mohammed ◽  
Hana Sonbol ◽  
Suaad Saleh Alwakeel ◽  
Modhi O. Alotaibi ◽  
Sohailah Alotaibi ◽  
...  

AbstractSoil is considered an extensively explored ecological niche for microorganisms that produce useful biologically active natural products suitable for pharmaceutical applications. The current study aimed at investigating biological activities and metabolic profiles of three fungal strains identified from different desert sites in Saudi Arabia. Soil fungal isolates were collected from AlQasab, Tabuk, and Almuzahimiyah in Saudi Arabia and identified. Furthermore, their antibacterial activity was investigated against Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumonia, and Escherichia coli in blood, nutrient, and Sabouraud dextrose agars. Moreover, fungal extracts were evaluated on cell viability/proliferation against human breast carcinoma and colorectal adenocarcinoma cells. To identify the biomolecules of the fungal extracts, High-performance liquid chromatography HPLC–DAD coupled to analytical LC–QTOF-MS method was employed for fungal ethyl acetate crude extract. Identified fungal isolates, Chaetomium sp. Bipolaris sp. and Fusarium venenatum showed varied inhibitory activity against tested microbes in relation to crude extract, microbial strain tested, and growth media. F. venenatum showed higher anticancer activity compared to Chaetomium sp. and Bipolaris sp. extracts against four of the tested cancer cell lines. Screening by HPLC and LC/MS-QTOF identified nine compounds from Chaetomium sp. and three from Bipolaris sp. however, for F. venenatum extracts compounds were not fully identified. In light of the present findings, some biological activities of fungal extracts were approved in vitro, suggesting that such extracts could be a useful starting point to find compounds that possess promising agents for medical applications. Further investigations to identify exact biomolecules from F. venenatum extracts are needed.

2019 ◽  
Vol 18 (4) ◽  
pp. 406-412
Author(s):  
Hoang Kim Chi ◽  
Tran Thi Hong Ha ◽  
Le Huu Cuong ◽  
Tran Thi Nhu Hang ◽  
Nguyen Dinh Tuan ◽  
...  

In the context of sources for natural products discovery are going scarcer, exploiting biotechnologically potential compounds from marine microbial symbionts is considered a relatively new trend. In our study a total of fifteen fungal strains were isolated from marine algal samples belonging to species Kappaphycus cottonii, K. striatus, Gracilaria eucheumatoides and Betaphycus gelatinus collected in Nha Trang in 2017. The in vitro biological activities, including antimicrobial, cytotoxic and hemolytic activities of ethyl acetate extracts of the fungal strains were determined. From fifteen fungal extracts, six displayed antimicrobial activity against at least one test strain. At 20 μg.ml-1, four fungal extracts were found to express cytotoxic activity on two human cancer cell lines hepatocellular carcinoma (Hep-G2) and breast adenocarcinoma (MCF-7), with G. eucheumatoides being the source of the highest number of producer strains. Hemolytic activity was observed in rabbit erythrocytes under almost all fungal extracts’ effect. No apparent relationship was observed between the biological activities of fungal isolates. The biological assessments uncovered several fungal candidates, such as Bge-1.1, Kco-2.1 and Geu-1.1 with relatively potent antimicrobial and cytotoxic activities while expressing less hemolytic effect at concentrations from 20 μg.ml-1 to 200 μg.ml-1. The results evidenced the potential of exploiting natural products from associated marine microorganisms, especially those for the purpose of pharmaceutical applications.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


2021 ◽  
Vol 22 (10) ◽  
pp. 5128
Author(s):  
Karolina Lendzion ◽  
Agnieszka Gornowicz ◽  
Krzysztof Bielawski ◽  
Anna Bielawska

The genus Scorzonera comprises nearly 200 species, naturally occurring in Europe, Asia, and northern parts of Africa. Plants belonging to the Scorzonera genus have been a significant part of folk medicine in Asia, especially China, Mongolia, and Turkey for centuries. Therefore, they have become the subject of research regarding their phytochemical composition and biological activity. The aim of this review is to present and assess the phytochemical composition, and bioactive potential of species within the genus Scorzonera. Studies have shown the presence of many bioactive compounds like triterpenoids, sesquiterpenoids, flavonoids, or caffeic acid and quinic acid derivatives in extracts obtained from aerial and subaerial parts of the plants. The antioxidant and cytotoxic properties have been evaluated, together with the mechanism of anti-inflammatory, analgesic, and hepatoprotective activity. Scorzonera species have also been investigated for their activity against several bacteria and fungi strains. Despite mild cytotoxicity against cancer cell lines in vitro, the bioactive properties in wound healing therapy and the treatment of microbial infections might, in perspective, be the starting point for the research on Scorzonera species as active agents in medical products designed for miscellaneous skin conditions.


1970 ◽  
Vol 48 (5) ◽  
pp. 291-298
Author(s):  
J. Pierluissi ◽  
J. Campbell ◽  
K. S. Rastogi ◽  
G. R. Green ◽  
V. Lazdins

The relation of insulinase activity to the biological effect of insulin on isolated tissue was studied. Rat diaphragm in vitro caused the rapid disappearance of immunoreactive insulin (IRI) in physiological concentrations. IRI loss at time intervals was exponential. The fractional rate of loss of IRI was therefore independent of IRI concentration and was also approximately constant per milligram of tissue, the value being 0.0216%/mg∙mm. The value of the Michaelis constant (Km), obtained from initial velocities at five initial concentrations of IRI, was 1.85 × 10−8M, and of the maximal velocity (Vmax) was 2.32 × 10−11 mole/g∙min, based on insulin dimer. The addition of an insulinase inhibitor (a partial hydrolysate of insulin) to hemidiaphragm in vitro reduced the fractional rate of IRI loss by 60%. The increase in Km, without appreciable change in Vmax, indicated that the inhibition was competitive. The IRI preserved by means of the inhibitor was biologically active, since it increased the glycogen accumulation and the incorporation of 14C-U-glucose into glycogen in a second, fresh hemidiaphragm. In single incubation of hemidiaphragm with insulin, the gain in glycogen was correlated with the amount of inhibitor. The biological effect of insulin on diaphragm in vitro was therefore limited by tissue insulinase activity, and insulinase inhibitor potentiated to some extent the action of insulin.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2626
Author(s):  
Wael Sobhy Darwish ◽  
Abada El Sayed Khadr ◽  
Maher Abd El Naby Kamel ◽  
Mabrouk A. Abd Eldaim ◽  
Ibrahim El Tantawy El Sayed ◽  
...  

Ceratonia siliqua (Carob) is an evergreen Mediterranean tree, and carob pods are potentially nutritive and have medicinal value. The present study was carried out to estimate the possible biological activities of phytochemical-characterized carob pod aqueous extract (CPAE). The phytochemical contents of CPAE were determined by using colorimetric methods and HPLC. In addition, the free radical scavenging properties and anti-diabetic, anti-hemolytic, and antimicrobial activities were estimated by using standardized in vitro protocols. The phytochemical analysis revealed that CPAE was rich in polyphenols, flavonoids, and alkaloids, where it contained a significant amount of gallic acid, catechin, and protocatechuic acid. Furthermore, CPAE exhibited strong antioxidant activity where it prevented the formation of 2, 2-Diphenyl-1-picryl hydrazyl, hydroxyl, and nitric oxide free radicals. Additionally, it had a potent inhibitory effect against digestive enzymes (amylase, maltase, sucrase, and lactase). Moreover, CPAE exhibited anti-Staph aureus, anti-Escherichia coli, anti-Candida albicans, and anti-herpes simplex type I virus (HSV-I). Finally, CPAE protected the erythrocyte membrane from hypotonic solution-induced hemolysis. Altogether, CPAE could be regarded as an interesting source of biologically active antioxidant, anti-diabetic, and antimicrobial preparation for a potential application in pharmaceutical and food supplement fields.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3266 ◽  
Author(s):  
Gokhan Zengin ◽  
Luigi Menghini ◽  
Antonella Di Sotto ◽  
Romina Mancinelli ◽  
Francesca Sisto ◽  
...  

Due to renewed interest in the cultivation and production of Italian Cannabis sativa L., we proposed a multi-methodological approach to explore chemically and biologically both the essential oil and the aromatic water of this plant. We reported the chemical composition in terms of cannabinoid content, volatile component, phenolic and flavonoid pattern, and color characteristics. Then, we demonstrated the ethnopharmacological relevance of this plant cultivated in Italy as a source of antioxidant compounds toward a large panel of enzymes (pancreatic lipase, α-amylase, α-glucosidase, and cholinesterases) and selected clinically relevant, multidrug-sensible, and multidrug-resistant microbial strains (Staphylococcus aureus, Helicobacter pylori, Candida, and Malassezia spp.), evaluating the cytotoxic effects against normal and malignant cell lines. Preliminary in vivo cytotoxicity was also performed on Galleria mellonella larvae. The results corroborate the use of this natural product as a rich source of important biologically active molecules with particular emphasis on the role exerted by naringenin, one of the most important secondary metabolites.


2007 ◽  
Vol 66 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Ian T. Johnson

Epidemiological studies showing a protective effect of diets rich in fruits and vegetables against cancer have focused attention on the possibility that biologically-active plant secondary metabolites exert anti-carcinogenic activity. This huge group of compounds, now collectively termed ‘phytochemicals’, provides much of the flavour and colour of edible plants and the beverages derived from them. Many of these compounds also exert anti-carcinogenic effects in animal models of cancer, and much progress has been made in defining their many biological activities at the molecular level. Such mechanisms include the detoxification and enhanced excretion of carcinogens, the suppression of inflammatory processes such as cyclooxygenase-2 expression, inhibition of mitosis and the induction of apoptosis at various stages in the progression and promotion of cancer. However, much of the research on phytochemicals has been conducted in vitro, with little regard to the bioavailability and metabolism of the compounds studied. Many phytochemicals present in plant foods are poorly absorbed by human subjects, and this fraction usually undergoes metabolism and rapid excretion. Some compounds that do exert anti-carcinogenic effects at realistic doses may contribute to the putative benefits of plant foods such as berries, brassica vegetables and tea, but further research with human subjects is required to fully confirm and quantify such benefits. Chemoprevention using pharmacological doses of isolated compounds, or the development of ‘customised’ vegetables, may prove valuable but such strategies require a full risk–benefit analysis based on a thorough understanding of the long-term biological effects of what are often surprisingly active compounds.


Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 422
Author(s):  
Madalina Neacsu ◽  
Vassilios Raikos ◽  
Yara Benavides-Paz ◽  
Sylvia H. Duncan ◽  
Gary J. Duncan ◽  
...  

Legumes are a source of health-promoting macro- and micronutrients, but also contain numerous phytochemicals with useful biological activities, an example of which are saponins. Epidemiological studies suggest that saponins may play a role in protection from cancer and benefit human health by lowering cholesterol. Therefore, they could represent good candidates for specialised functional foods. Following the consumption of a soya-rich high-protein weight-loss diet (SOYA HP WL), the concentrations of Soyasaponin I (SSI) and soyasapogenol B (SSB) were determined in faecal samples from human volunteers (n = 10) and found to be between 1.4 and 17.5 mg per 100 g fresh faecal sample. SSB was the major metabolite identified in volunteers’ plasma (n = 10) after consumption of the soya test meal (SOYA MEAL); the postprandial (3 h after meal) plasma concentration for SSB varied between 48.5 ng/mL to 103.2 ng/mL. The metabolism of SSI by the gut microbiota (in vitro) was also confirmed. This study shows that the main systemic metabolites of soyasaponin are absorbed from the gut and that they are bioavailable in plasma predominantly as conjugates of sapogenol. The metabolism and bioavailability of biologically active molecules represent key information necessary for the efficient development of functional foods.


2018 ◽  
Vol 13 (2) ◽  
pp. 120 ◽  
Author(s):  
Soumia Merah ◽  
Dahmane Dahmane ◽  
Soumeya Krimat ◽  
Hafidha Metidji ◽  
Ahmed Nouasri ◽  
...  

<p class="Abstract">New bioactive natural products, the phenolic composition and the biological activities of organic extracts from the needles of the Algerian <em>Pinus coulteri</em> were investigated. The analysis by HPLC-DAD of crude extract revealed the presence of 10 phenolic acids and nine flavonoids. In vitro anti-oxidant activities were performed using four different tests. The greatest antiradical activity was found in the ethyl acetate fraction (IC<sub>50 </sub>= 3.2 ± 0.3 µg/mL), whereas the diethyl ether fraction had the higher contents of total phenolics and flavonoids and exhibited a highest activity in reducing power and β-carotene–linoleic acid tests with EC<sub>50</sub>= 67.1 ± 0.4 μg/mL and 71.5 ± 0.2% of inhibition, respectively. Furthermore, a low to moderate antimicrobial activity according to all extracts was revealed against eight bacteria tested. The MIC value of chloroform fraction showed a strong degree of antibacterial activity (&lt;0.09 mg/mL). The crude extract was found toxic with LC<sub>50</sub> value of 15.2 μg/mL by brine shrimp toxicity assay. The needle extract of <em>P. coulteri</em> is rich in valuable biologically active compounds and could represent a new resource of anti-oxidant agents for the treatment of diseases.</p><p class="Abstract"><strong>Video Clip of Methodology:</strong></p><p class="Abstract">Disc diffusion test: 6 min 41 sec   <a href="https://www.youtube.com/v/-sfOw7qg5ws">Full Screen</a>   <a href="https://www.youtube.com/watch?v=-sfOw7qg5ws">Alternate</a></p>


2020 ◽  
Author(s):  
Adepoju Oluwarinu ◽  
Omololu-Aso

ABSTRACTAspilia africana (Compositae) is one of such plants considered of great importance in pharmacopeia of traditional medicine. Its leaf is widely used in ethnomedicinal practices in tropical Africa because of its ability to stop bleeding and promote rapid healing of wounds. This study was carried out on the leaf part to determine its antimicrobial and antioxidant potentials of its leaf methanol extract. The methanolic extract of the leaf was subjected to preliminary phytochemical screening and it indicated the presence of saponins, tannin, resin, phlobatannins, and phenols. The in-vitro antibacterial test of the methanol crude extract using agar well diffusion method showed broad-spectrum activity with minimum bactericidal concentration of 30, 75 mg/mL for Klebsiella pneumonia, and Bacillus subtilis respectively. In-vitro antioxidant activities using 2, 2–diphenyl-1-picrylhydrazyl assay indicate that the methanol leaves extract had higher activity than of 92.23 µg/mL compared to standard drugs (Ascorbic acid 1.07mg/mL) and IC50 at 4.66. This study concluded that Aspilia africana methanol crude extract exhibits dosage-dependent antioxidant potential and could be further explored if it’s are in pure form.


Sign in / Sign up

Export Citation Format

Share Document