scholarly journals B2M overexpression correlates with malignancy and immune signatures in human gliomas

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hao Zhang ◽  
Biqi Cui ◽  
Yulai Zhou ◽  
Xinxing Wang ◽  
Wantao Wu ◽  
...  

AbstractBecause of the limited treatment strategy of gliomas, the key of diagnosis and treatment is finding new molecular biomarkers. Here, we explored the potential of β2-microglobulin (B2M) to serve as a hopeful candidate for immunotherapy or diagnostic biomarker in gliomas. The genomic profiles, clinical characteristics, and immune signatures were analyzed based on TCGA and CGGA databases. We carried out the whole statistical analyses using R project. High B2M expression correlated with worse prognosis. Somatic mutations of gliomas with high B2M expression are associated with PTEN deletion and EGFR amplification. Isocitrate dehydrogenase (IDH) mutations accounted for 82% in gliomas with low B2M expression. In addition, B2M positively correlated with ESTIMATE scores, interacted with infiltrating immune and stromal cell types. B2M also suppressed anti-tumor immunity through immune related processes. Meanwhile, B2M was associated with immune checkpoint molecules and inflammatory activities. Finally, functional annotation of the identified B2M related genes verified that B2M was a potential candidate for immunotherapy. We confirmed that B2M played a critical role in tumor progression, patient prognosis and immunotherapy of gliomas.

2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii27-iii28
Author(s):  
C Brito ◽  
A Azevedo ◽  
S Esteves ◽  
C Martins ◽  
M Mafra ◽  
...  

Abstract BACKGROUND Gliomas are the most common and lethal malignant tumors of central nervous system. In 2016, World Health Organization (WHO) classification included IDH mutations and 1p/19q codeletion as diagnostic criteria to define glioma entities. However, new biomarkers for diagnosis, prognosis and response to therapy are needed. In this context, PIK3CA mutations have been described as constitutive mutations, which highlights their relevance in gliomas. Here we clarified the clinical relevance of PIK3CA mutations according to the 2016 WHO classification, the potential impact on diagnosis, prognosis, response to therapy, as well as their correlation with EGFR amplification and PTEN deletion. MATERIAL AND METHODS A cohort of 444 adult diffuse glioma samples from Instituto Português de Oncologia Lisboa Francisco Gentil (IPOLFG) was classified according to the 2016 WHO Classification. The mutational status of exon 9 and 20 of PIK3CA was evaluated in molecular subgroups of gliomas by Sanger sequencing. PTEN deletion and EGFR amplification were identified by Fluorescent in situ hybridization (FISH). RESULTS PIK3CA mutations showed a higher frequency in the subgroup of gliomas with IDH mutations and 1p/19q codeletion - oligodendrogliomas (10%). In Glioblastoma (GBM) IDH-mutant and IDH-wildtype these oncogenic mutations were observed in 9% and 3% of cases, respectively. Similar results were obtained using The Cancer Genome Atlas (TCGA) data, which was 8% and 2%, respectively. H1047R and E542K were the most frequent mutations identified in the glioma molecular subgroups. Importantly, we found 3 unreported pathogenic variants in exon 20 of PIK3CA (c.3112T>C, c.2988T>C, c.3040C>T) and one polymorphic variant (c.3210A>G). In addition, PIK3CA mutations, PTEN deletion and EGFR amplification were not mutually exclusive alterations in glioma molecular subgroups. For the first time in gliomas, it was identified the rs45455192 polymorphism at a frequency of 16% in astrocytomas IDH-mutant, 24% in oligodendrogliomas and 18% in both molecular subgroups of GBM, although this polymorphism did not have prognostic value. The analysis of PIK3CA mutations in glioma recurrences showed that these mutations are maintained during glioma progression. CONCLUSION In two independent cohorts (IPOLFG and TCGA), it was obtained similar frequencies of PIK3CA mutations in GBM molecular subgroups. In addition, these mutations are more relevant in less aggressive gliomas (IDH-mutated and 1p/19q codeleted). These alterations seem to be important in tumor maintenance and progression, which makes this gene a potential therapeutic target. In the future, we will investigate the effect of the in vitro pharmacological inhibition of PIK3CA in GBM mutant cell lines.


1994 ◽  
Vol 72 (06) ◽  
pp. 937-941 ◽  
Author(s):  
Karim Rezaul ◽  
Shigeru Yanagi ◽  
Kiyonao Sada ◽  
Takanobu Taniguchi ◽  
Hirohei Yamamura

SummaryIt has been demonstrated that activation of platelets by platelet-activating factor (PAF) results in a dramatic increase in tyrosine phosphorylation of several cellular proteins. We report here that p72 syk is a potential candidate for the protein-tyrosine phosphorylation following PAF stimulation in porcine platelets. Immunoprecipitation kinase assay revealed that PAF stimulation resulted in a rapid activation of p72 syk which peaked at 10 s. The level of activation was found to be dose dependent and could be completely inhibited by the PAF receptor antagonist, CV3988. Phosphorylation at the tyrosine residues of p72 syk coincided with activation of yllsyk. Pretreatment of platelets with aspirin and apyrase did not affect PAF induced activation of p72 syk .Furthermore, genistein, a potent protein-tyrosine-kinase inhibitor, diminished PAF-induced p72 syk activation and Ca2+ mobilization as well as platelet aggregation. These results suggest that p72 syk may play a critical role in PAF-induced aggregation, possibly through regulation of Ca2+ mobilization.


2020 ◽  
Vol 15 (17) ◽  
pp. 1645-1652
Author(s):  
Keming Zhang ◽  
Hang Li ◽  
Lei Zhang ◽  
Wanqing Liao ◽  
Liyan Ling ◽  
...  

Aim: To evaluate the clinical data and quantitative cerebrospinal fluid for associations with the outcome of cryptococcal meningitis (CM) patients in the hospital. Patients & methods: We retrospectively analyzed a total of 139 CM patients comprising 108 without HIV and 31 with HIV admitted in a Jiang Xi hospital. Resμlts: We found that CM patients with the high fungal burden (≥10 yeasts/μl) (26.3%) had a worse prognosis than those with the low fungal burden (<10 yeasts/μl). (4.9%) (p = 0.0007 <0.05). Conclusion: In CM patients, a fungal burden of 10 yeasts/μl in the first cerebrospinal fluid test may be used as an indicator of patient prognosis, and we can personalize patients’ treatment based on the fungal burden to improve prognosis.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi74-vi74
Author(s):  
Erin Smithberger ◽  
Abigail Shelton ◽  
Madison Butler ◽  
Alex Flores ◽  
Ryan Bash ◽  
...  

Abstract Glioblastoma (GBM) is an aggressive primary brain tumor with a poor survival rate. One of the most common molecular alterations seen in GBM is amplification and/or mutation of the Epidermal Growth Factor Receptor (EGFR), which has made it an attractive therapeutic target. However, several EGFR tyrosine kinase inhibitors have been tested clinically in GBM with minimal success. One reason for this lack of efficacy could be due to acute, adaptive resistance via alternative pathway activation. To investigate this mechanism of tumor resistance, we used RNA-seq and multiplex inhibitor bead/mass spectrometry (MIB-MS) to analyze the transcriptomes and kinomes of genetically engineered murine astrocytes with common GBM genotypes. We have previously shown that 38% of the expressed kinome varied among a panel of diverse nGEM astrocytes harboring Cdkn2a deletion (C) plus Pten deletion (CP), wild-type human EGFR (CE) or EGFRvIII (CEv3) overexpression or both EGFRvIII overexpression and Pten deletion (CEv3P). Although CE have a similar transcriptional profile to C cells at baseline, when treated with the EGFR inhibitor afatinib, CE respond more similarly to CEv3 cells. When cells containing endogenous murine EGFR (C and CP) are treated with afatinib, fewer than 0.5% of kinases showed differential expression. In cells with EGFR overexpression alone, more than 6% of kinases were differentially expressed upon afatinib treatment, including Ntrk3, Fgfr2 and 3, Lyn, Bmx, Epha2 and 5, Fn3k, a kinase involved in fructosamine processing, and Nrbp2, a kinase involved in regulation of apoptosis. This effect was blunted in cells lacking Pten in addition to having EGFRvIII (CEv3P), resulting in less than 2% of kinases being differentially expressed. The only kinase upregulated in all three EGFR-overexpressing cell types was Coq8a, which is involved in electron transport and response to DNA damage. Given this overlap in response, Coq8a could be a potential dual treatment target for GBM.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Ekarat Phattarataratip ◽  
Tarit Panitkul ◽  
Watunyoo Khodkaew ◽  
Pattarapong Anupuntanun ◽  
Jirapat Jaroonvechatam ◽  
...  

Abstract Background Aberrant expression of stem cell markers has been observed in several types of neoplasms. This trait attributes to the acquired stem-like property of tumor cells and can impact patient prognosis. The objective of this study was to comparatively analyze the expression and significance of SOX2 and OCT4 in various types of odontogenic cysts and tumors. Methods Fifty-five cases of odontogenic cysts and tumors, including 15 ameloblastomas (AM), 5 adenomatoid odontogenic tumors (AOT), 5 ameloblastic fibromas (AF), 5 calcifying odontogenic cysts (COC), 10 dentigerous cysts (DC) and 15 odontogenic keratocysts (OKC) were investigated for the expression of SOX2 and OCT4 immunohistochemically. Results Most OKCs (86.7 %) and all AFs expressed SOX2 in more than 50 % of epithelial cells. Its immunoreactivity was moderate-to-strong in all epithelial cell types in both lesions. In contrast, SOX2 expression was undetectable in AOTs and limited to the ameloblast-like cells in a minority of AM and COC cases. Most DCs showed positive staining in less than 25 % of cystic epithelium. Significantly greater SOX2 expression was noted in OKC compared with DC or AM, and in AF compared with COC or AOT. OCT4 rarely expressed in odontogenic lesions with the immunoreactivity being mild and present exclusively in OKCs. Conclusions SOX2 is differentially expressed in odontogenic cysts and tumors. This could be related to their diverse cells of origin or stages of histogenesis. The overexpression of SOX2 and OCT4 in OKC indicates the acquired stem-like property. Future studies should investigate whether the overexpression of OCT4 and SOX2 contributes to the aggressive behaviors of the tumors.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2828 ◽  
Author(s):  
Linna Wang ◽  
Xiaoli Wang ◽  
Tingting Li ◽  
Yihua Zhang ◽  
Hui Ji

The inflammatory response mediated by microglia plays a critical role in the progression of ischemic stroke. Phosphoinositide 3-kinase gamma (PI3Kγ) has been implicated in multiple inflammatory and autoimmune diseases, making it a promising target for therapeutic intervention. The aim of this study was to evaluate the efficacy of 8e, a hydrogen sulfide (H2S) releasing derivative of 3-n-butylphthalide (NBP), on brain damage and PI3Kγ signaling following cerebral ischemia injury. 8e significantly reduced sensorimotor deficits, focal infarction, brain edema and neural apoptosis at 72 h after transient middle cerebral artery occlusion (tMCAO). The NOX2 isoform of the NADPH oxidase family is considered a major enzymatic source of superoxide. We found that the release of superoxide, together with the expression of NOX2 subunits p47phox, p-p47phox, and the upstream PI3Kγ/AKT signaling were all down-regulated by 8e, both in the penumbral region of the rat brain and in the primary cultured microglia subjected to oxygen-glucose deprivation (OGD). With the use of siRNA and pharmacological inhibitors, we further demonstrated that 8e regulates the formation of superoxide in activated microglia through the PI3Kγ/AKT/NOX2 signaling pathway and subsequently prevents neuronal death in neighboring neurons. Our experimental data indicate that 8e is a potential candidate for the treatment of ischemic stroke and PI3Kγ-mediated neuroinflammation.


1995 ◽  
Vol 268 (4) ◽  
pp. C1067-C1074 ◽  
Author(s):  
M. E. O'Donnell ◽  
J. D. Brandt ◽  
F. R. Curry

The trabecular meshwork (TM) of the eye plays a critical role in modulating intraocular pressure (IOP) through regulation of aqueous humor outflow, although the underlying mechanisms remain unknown. Ethacrynic acid, an agent known to inhibit Na-K-Cl cotransport of a number of cell types, recently has been reported to increase aqueous outflow and lower IOP through an unknown effect on the TM. In vascular endothelial cells and a variety of other cell types, the Na-K-Cl cotransporter functions to regulate intracellular volume. The present study was conducted to evaluate TM cells for the presence of Na-K-Cl cotransport activity and to test the hypothesis that modulation of cotransport activity alters intracellular volume and, consequently, permeability of the TM. We demonstrate here that bovine and human TM cells exhibit robust Na-K-Cl cotransport activity that is inhibited by bumetanide and by ethacrynic acid. Our studies also show that TM cell Na-K-Cl cotransport is modulated by a variety of hormones and neurotransmitters. Inhibition of the cotransporter either by bumetanide, ethacrynic acid, or inhibitory hormones reduces TM intracellular volume, whereas stimulatory hormones increase cell volume. In addition, shrinkage of the cells by hypertonic media stimulates cotransport activity and initiates a subsequent regulatory volume increase. Permeability of TM cell monolayers, assessed as transmonolayer flux of [14C]sucrose, is increased by hypertonicity-induced cell shrinkage and by bumetanide. These findings suggest that Na-K-Cl cotransport of TM cells is of central importance to regulation of intracellular volume and TM permeability. Defects of Na-K-Cl cotransport may underlie the pathophysiology of glaucoma.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 663
Author(s):  
Kwang-Hyun Baek ◽  
Jihye Choi ◽  
Chang-Zhu Pei

Octamer-binding transcription factor 3/4 (OCT-3/4), which is involved in the tumorigenesis of somatic cancers, has diverse functions during cancer development. Overexpression of OCT-3/4 has been detected in various human somatic tumors, indicating that OCT-3/4 activation may contribute to the development and progression of cancers. Stem cells can undergo self-renewal, pluripotency, and reprogramming with the help of at least four transcription factors, OCT-3/4, SRY box-containing gene 2 (SOX2), Krüppel-like factor 4 (KLF4), and c-MYC. Of these, OCT-3/4 plays a critical role in maintenance of undifferentiated state of embryonic stem cells (ESCs) and in production of induced pluripotent stem cells (iPSCs). Stem cells can undergo partitioning through mitosis and separate into specific cell types, three embryonic germ layers: the endoderm, the mesoderm, and the trophectoderm. It has been demonstrated that the stability of OCT-3/4 is mediated by the ubiquitin-proteasome system (UPS), which is one of the key cellular mechanisms for cellular homeostasis. The framework of the mechanism is simple, but the proteolytic machinery is complicated. Ubiquitination promotes protein degradation, and ubiquitination of OCT-3/4 leads to regulation of cellular proliferation and differentiation. Therefore, it is expected that OCT-3/4 may play a key role in proliferation and differentiation of proliferating cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Samuel Kemble ◽  
Adam P. Croft

Rheumatoid arthritis (RA) is a chronic prototypic immune-mediated inflammatory disease which is characterized by persistent synovial inflammation, leading to progressive joint destruction. Whilst the introduction of targeted biological drugs has led to a step change in the management of RA, 30-40% of patients do not respond adequately to these treatments, regardless of the mechanism of action of the drug used (ceiling of therapeutic response). In addition, many patients who acheive clinical remission, quickly relapse following the withdrawal of treatment. These observations suggest the existence of additional pathways of disease persistence that remain to be identified and targeted therapeutically. A major barrier for the identification of therapeutic targets and successful clinical translation is the limited understanding of the cellular mechanisms that operate within the synovial microenvironment to sustain joint inflammation. Recent insights into the heterogeneity of tissue resident synovial cells, including macropahges and fibroblasts has revealed distinct subsets of these cells that differentially regulate specific aspects of inflammatory joint pathology, paving the way for targeted interventions to specifically modulate the behaviour of these cells. In this review, we will discuss the phenotypic and functional heterogeneity of tissue resident synovial cells and how this cellular diversity contributes to joint inflammation. We discuss how critical interactions between tissue resident cell types regulate the disease state by establishing critical cellular checkpoints within the synovium designed to suppress inflammation and restore joint homeostasis. We propose that failure of these cellular checkpoints leads to the emergence of imprinted pathogenic fibroblast cell states that drive the persistence of joint inflammation. Finally, we discuss therapeutic strategies that could be employed to specifically target pathogenic subsets of fibroblasts in RA.


2000 ◽  
Vol 113 (24) ◽  
pp. 4605-4617
Author(s):  
A. Hallmann ◽  
D.L. Kirk

Volvox is one of the simplest multicellular organisms with only two cell types, yet it has a surprisingly complex extracellular matrix (ECM) containing many region-specific morphological components, making Volvox suitable as a model system for ECM investigations. ECM deposition begins shortly after inversion, which is the process by which the embryo turns itself right-side-out at the end of embryogenesis. It was previously shown that the gene encoding an ECM glycoprotein called ISG is transcribed very transiently during inversion. Here we show that the developmentally controlled ISG accumulates at the bases of the flagella right after inversion, before any morphologically recognizable ECM structures have yet developed. Later, ISG is abundant in the ‘flagellar hillocks’ that encircle the basal ends of all flagella, and in the adjacent ‘boundary zone’ that delimits the spheroid. Transgenic Volvox were generated which express a truncated form of ISG. These transgenics exhibit a severely disorganized ECM within which the cells are embedded in a highly chaotic manner that precludes motility. A synthetic version of the C-terminal decapeptide of ISG has a similar disorganizing effect, but only when it is applied during or shortly after inversion. We postulate that ISG plays a critical role in morphogenesis and acts as a key organizer of ECM architecture; at the very beginning of ECM formation ISG establishes an essential initial framework that both holds the somatic cells in an adaptive orientation and acts as the scaffold upon which the rest of the ECM can be properly assembled, assuring that somatic cells of post-inversion spheroids are held in orientations and locations that makes adaptive swimming behavior possible.


Sign in / Sign up

Export Citation Format

Share Document