scholarly journals Effect of polyaniline content and protonating dopants on electroconductive composites

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katarzyna Bednarczyk ◽  
Wiktor Matysiak ◽  
Tomasz Tański ◽  
Henryk Janeczek ◽  
Ewa Schab-Balcerzak ◽  
...  

AbstractElastic constructive elements prepared by electrospinning using polyacrylonitrile/polyaniline (PAN/PANI) electroconductive composites were prepared and investigated in terms of their thermal and mechanical properties. This study was focused on the impact of the type of counterion of polyaniline and the PANI content in composites on the thermal, conductive and morphological properties of electrospun fibers. In this study, composites obtained from PANI doped with sulfuric acid showed the highest conductivity, and composites obtained from PANI doped with hydrochloric acid showed the highest thermal stability. All obtained composites exhibited good thermal stability, with T5 values in the range of 230–268 °C that increased with increasing PANI content. The prepared composites exhibited comparable PAN Tg values, which indicates their suitability for processing. Instrumental analysis of polymers and composites was carried out using UV–visible spectroscopy, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical thermal analysis and scanning electron microscopy.

2021 ◽  
Author(s):  
Ahmed ZITI ◽  
Bouchaib HARTITI ◽  
Amine BELAFHAILI ◽  
Hicham LABRIM ◽  
Salah FADILI ◽  
...  

Abstract Quaternary semiconductor Cu2NiSnS4 thin film was made by the sol-gel method associated to dip-coating technique on ordinary glass substrates. In this paper, we have studied the impact of dip-coating cycle at different cycles: 4, 5 and 6 on the structural, compositional, morphological, optical and electrical characteristics. CNTS thin films have been analyzed by various characterization techniques including: X-ray diffractometer (XRD), Raman measurements, scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDS), UV-visible spectroscopy and four-point probe method. XRD spectra demonstrated the formation of cubic Cu2NiSnS4 with privileged orientation at (111) plane. Crystallite size of cubic CNTS thin films increase with from 6.30 to 9.52 with dip-coating cycle augmented. Raman scattering confirmed the existence of CNTS thin films by Raman vibrational mode positioned at 332 cm− 1. EDS investigations showed near-stoichiometry of CNTS sample deposited at 5 cycles. Scanning electron microscope showed uniform surface morphologies without any crack. UV-visible spectroscopy indicated that the optical absorption values are larger than 104 cm− 1, Estimated band gap energy of CNTS absorber layers decrease from 1.64 to 1.5 eV with dip-coating cycle increased. The electrical conductivity of CNTS thin films increase from 0.19 to 4.16 (Ω cm)-1. These characteristics are suitable for solar cells applications.


2013 ◽  
Vol 68 (5-6) ◽  
pp. 714-718 ◽  
Author(s):  
Franziska M. Betzler ◽  
Ruth Boller ◽  
Adriana Grossmann ◽  
Thomas M. Klapötke

Nitrogen-rich polymers were synthesized by radical polymerization using the reaction of 5- aminotetrazole with methacryloyl chloride and acryloyl chloride, respectively. The nitrogen content of poly(methacrylamidotetrazole) and poly(acrylamidotetrazole), as well as the energetic character of these compounds was increased by nitration of the amido moiety. The products remained however insensitive and had a very good thermal stability. All substances were characterized by using vibrational spectroscopy (IR), mass spectrometry, elemental analysis, as well as multinuclear NMR spectroscopy. Additionally, the impact and friction sensitivities were determined by BAM standards, and also the sensitivity against electrostatic discharge was studied. The energetic properties were investigated by bomb-calorimetric measurements and calculations with the EXPLO5 software, and the thermal stability was investigated by differential scanning calorimetry. All compounds are thermally highly stable materials. The high stability of the polymers towards impact and friction and the good energetic character makes these polymers promising candidates for applications as environmentally friendly nitrogen-rich polymers


2017 ◽  
Vol 231 (11-12) ◽  
Author(s):  
Tianlin Cao ◽  
Fanyu Zhao ◽  
Zulin Da ◽  
Fengxian Qiu ◽  
Dongya Yang ◽  
...  

AbstractIn this work, an amino-functionalized graphene oxide (AFGO) was synthesized by graphene oxide (GO) and ethylene diamine. A novel amino-functionalized graphene oxide/azobenzene polyimide (AFGO/ACPI) was synthesized with AFGO, azobenzene chromophore and pyromellitic dianhydride (PMDA). The structure, mechanical and thermal property of AFGO/ACPI were characterized and measured by fourier transform infrared, UV-visible spectroscopy, near-infrared spectrum, thermogravimetric analysis and differential scanning calorimetry. To obtain the refractive index of AFGO/ACPI at different temperature and wavelength (532 nm, 650 nm and 850 nm), the attenuated total reflection (ATR) method was used to measure, and thermo optic coefficients (dn/dT) were −7.22×10


2019 ◽  
Vol 824 ◽  
pp. 163-167
Author(s):  
Pema Dechen ◽  
Ekasith Somsook

In this report, synthesis and characterization of gold nanoparticles (AuNPs) from gold leaf by electrolysis in two different media (gel and paper) in presence of sodium chloride (NaCl), glucose (C6H12O6) and polyvinyl pyrrolidone (PVP) at room temperature were investigated. Graphite was used as two electrodes, NaCl was used as an electrolyte, C6H12O6 was used as reducing agent and PVP was used as stabilizer to control the aggregation of the nanoparticles. UV-Visible spectroscopy (UV-Vis) and scanning electron microscopy (SEM) were used to confirm the characteristics and morphologies of the synthesized AuNPs.


2019 ◽  
Vol 33 (3) ◽  
pp. 347-361 ◽  
Author(s):  
Vesna Ocelić Bulatović ◽  
Anamarija Turković ◽  
Emi Govorčin Bajsić ◽  
Romana Zovko ◽  
Antun Jozinović ◽  
...  

Low-density polyethylene (LDPE) is extensively used as packaging material, and as such has a short service life, but long environmental persistence. The alternative to reducing the impact of LDPE as packaging material on the environment is to blend it with carbohydrate-based polymers, like starch. Therefore, the focus of this investigation was to prepare bio-based blends of LDPE and thermoplastic starch (TPS) containing different amounts of TPS using a Brabender kneading chamber. Due to incompatibility of LDPE/ TPS blends, a styrene–ethylene/butylene–styrene block copolymer, grafted with maleic anhydride (SEBS-g-MA) containing 2 mol % anhydride groups, was added as a compatibilizer. The effect of the biodegradable, hydrophilic TPS, its content, and the incorporation of the compatibilizer on the properties of LDPE/TPS blends were analysed. The characterization was performed by means of thermogravimetric analysis (TG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and water absorption (WA). Based on the results of the morphological structure, a good dispersion of the TPS phase in LDPE matrix was obtained with the incorporation of compatibilizer, which resulted in better thermal and barrier properties of these materials.


2019 ◽  
Vol 55 (3) ◽  
pp. 297-318 ◽  
Author(s):  
Mandip Kaur ◽  
LS Jayakumari

Epoxy syntactic foams with different compositions of cenosphere were fabricated and characterised. The effect of loading cenosphere in epoxy syntactic foams was analysed. Good thermal stability of cenosphere–epoxy syntactic foams was established from the thermogravimetric analysis results. The completion of cure reaction at ambient temperature conditions was ascertained from differential scanning calorimetry results. Dynamic mechanical analysis revealed 114°C as the glass transition temperatures ( Tg) for neat epoxy sample, which increased to 132°C with 50% loading of cenosphere. Cenosphere-filled epoxy syntactic foams had low density and low water absorption values when compared to the neat epoxy sample. Homogeneous distribution of the cenosphere particles was confirmed using scanning electron microscopy. The compression studies confirmed brittle failure of the syntactic foams. This was also supported by the scanning electron microscopic images. The incorporation of hollow cenosphere particles led to a decrease in the flexural strength. Syntactic foams with 30% loading of cenosphere exhibited best specific modulus and specific strength. The specific strength increased by 24% for T30 sample and specific modulus increased by 36% for T30 samples when compared to the neat epoxy sample. As the need for strong but lightweight thermally stable products is continually increasing, there is a great possibility for the utilisation of these cenosphere–epoxy syntactic foams as lightweight core for sandwich composites.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1093
Author(s):  
Ye Xue ◽  
Xiao Hu

In this study, hexagonal boron nitride (h-BN) nanosheets and Bombyx mori silk fibroin (SF) proteins were combined and electrospun into BNSF nanofibers with different ratios. It was found that the surface morphology and crosslinking density of the nanofibers can be tuned through the mixing ratios. Fourier transform infrared spectroscopy study showed that pure SF electrospun fibers were dominated by random coils and they gradually became α-helical structures with increasing h-BN nanosheet content, which indicates that the structure of the nanofiber material is tunable. Thermal stability of electrospun BNSF nanofibers were largely improved by the good thermal stability of BN, and the strong interactions between BN and SF molecules were revealed by temperature modulated differential scanning calorimetry (TMDSC). With the addition of BN, the boundary water content also decreased, which may be due to the high hydrophobicity of BN. These results indicate that silk-based BN composite nanofibers can be potentially used in biomedical fields or green environmental research.


2019 ◽  
Vol 20 (12) ◽  
pp. 3084 ◽  
Author(s):  
Lauretta Maggi ◽  
Valeria Friuli ◽  
Enrica Chiesa ◽  
Silvia Pisani ◽  
Mirena Sakaj ◽  
...  

An electrospinning process was optimized to produce fibers of micrometric size with different combinations of polymeric and surfactant materials to promote the dissolution rate of an insoluble drug: firocoxib. Scanning Electron Microscopy (SEM) showed that only some combinations of the proposed carrier systems allowed the production of suitable fibers and further fine optimization of the technique is also needed to load the drug. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) suggest that the drug is in an amorphous state in the final product. Drug amorphization, the fine dispersion of the active in the carriers, and the large surface area exposed to water interaction obtained through the electrospinning process can explain the remarkable improvement in the dissolution performance of firocoxib from the final product developed.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 51 ◽  
Author(s):  
Adriana Nicoleta Frone ◽  
Dan Batalu ◽  
Ioana Chiulan ◽  
Madalina Oprea ◽  
Augusta Raluca Gabor ◽  
...  

Biodegradable blends and nanocomposites were produced from polylactic acid (PLA), poly(3-hydroxybutyrate) (PHB) and cellulose nanocrystals (NC) by a single step reactive blending process using dicumyl peroxide (DCP) as a cross-linking agent. With the aim of gaining more insight into the impact of processing methods upon the morphological, thermal and mechanical properties of these nanocomposites, three different processing techniques were employed: compression molding, extrusion, and 3D printing. The addition of DCP improved interfacial adhesion and the dispersion of NC in nanocomposites as observed by scanning electron microscopy and atomic force microscopy. The carbonyl index calculated from Fourier transform infrared spectroscopy showed increased crystallinity after DCP addition in PLA/PHB and PLA/PHB/NC, also confirmed by differential scanning calorimetry analyses. NC and DCP showed nucleating activity and favored the crystallization of PLA, increasing its crystallinity from 16% in PLA/PHB to 38% in DCP crosslinked blend and to 43% in crosslinked PLA/PHB/NC nanocomposite. The addition of DCP also influenced the melting-recrystallization processes due to the generation of lower molecular weight products with increased mobility. The thermo-mechanical characterization of uncross-linked and cross-linked PLA/PHB blends and nanocomposites showed the influence of the processing technique. Higher storage modulus values were obtained for filaments obtained by extrusion and 3D printed meshes compared to compression molded films. Similarly, the thermogravimetric analysis showed an increase of the onset degradation temperature, even with more than 10 °C for PLA/PHB blends and nanocomposites after extrusion and 3D-printing, compared with compression molding. This study shows that PLA/PHB products with enhanced interfacial adhesion, improved thermal stability, and mechanical properties can be obtained by the right choice of the processing method and conditions using NC and DCP for balancing the properties.


Author(s):  
Ali J Salman ◽  
Ali Assim Al-Obaidi ◽  
Dalya H Al-Mamoori ◽  
Lina M Shaker ◽  
Ahmed A Al-Amiery

Abstract The polyurethane (PU) has been showing a dramatic increase in applications related to material science and technology. However, the mechanical, physical and thermal properties could be further improved by loading PU with zirconia (Zr) to create renewable materials known as polyurethane–zirconia (PUZ) composites. In this study, PU matrix was treated with wt.% Zr at 0.5, 1.0, 1.5 and 2.0. In this study, the thermo-mechanical properties and the morphology were investigated of PU and PUZ nano-samples. The images of the scanning electron microscope (SEM) were the prime tool in investigating PU and PUZ surfaces and fractured surfaces showing vanishing the cracks and formation of agglomeration on the sample PUZ-1.5%. In addition, the tensile strength, Young’s modulus and maximum loading were improved by 36.7, 31.8 and 39.1%, respectively, at Zr loading of 1.5 wt.%. The flexural stress and the load were improved by 94.3% and 93.6%, respectively, when Zr loading was 1.5 wt.%. The impact without and with a notch was improved by 110.7% and 62.6%, respectively, at Zr loading of 1.5 wt.%. The the morphologies of the PU surface and Zr surface supported by SEM images. Regarding the storage modulus ability of PU and PUZ composites, Zr loading has negatively influenced E. The E functioning temperature was observed to move from 142 to 183°C. Another effect was determined by adding a small amount of Zr. This small amount was enough to shift the crystallization temperature (${T}_c$) and the melting temperature (${T}_m$) of PU from 125 to 129°C and from 150 to 144°C, respectively.


Sign in / Sign up

Export Citation Format

Share Document