scholarly journals Pulsed 3.5 GHz high power microwaves irradiation on physiological solution and their biological evaluation on human cell lines

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pradeep Bhartiya ◽  
Sohail Mumtaz ◽  
Jun Sup Lim ◽  
Neha Kaushik ◽  
Pradeep Lamichhane ◽  
...  

AbstractMicrowave (MW) radiation is increasingly being used for several biological applications. Many investigations have focused on understanding the potential influences of pulsed MW irradiation on biological solutions. The current study aimed to investigate the effects of 3.5 GHz pulsed MW radiation-irradiated liquid solutions on the survival of human cancer and normal cells. Different physiological solutions such as phosphate buffer saline, deionized water, and Dulbecco’s modified Eagle medium (DMEM) for cell culture growth were irradiated with pulsed MW radiation (45 shots with the energy of 1 mJ/shot). We then evaluated physiological effects such as cell viability, metabolic activity, mitochondrial membrane potential, cell cycle, and cell death in cells treated with MW-irradiated biological solutions. As MW irradiation with power density ~ 12 kW/cm2 mainly induces reactive nitrogen oxygen species in deionized water, it altered the cell cycle, membrane potential, and cell death rates in U373MG cells due to its high electric field ~ 11 kV/cm in water. Interestingly, MW-irradiated cell culture medium and phosphate-buffered saline did not alter the cellular viability and metabolic energy of cancer and normal cells without affecting the expression of genes responsible for cell death. Taken together, MW-irradiated water can alter cellular physiology noticeably, whereas irradiated media and buffered saline solutions induce negligible or irrelevant changes that do not affect cellular health.

2019 ◽  
Vol 19 (4) ◽  
pp. 557-566 ◽  
Author(s):  
Nerella S. Goud ◽  
Mahammad S. Ghouse ◽  
Jatoth Vishnu ◽  
Jakkula Pranay ◽  
Ravi Alvala ◽  
...  

Background: Human Galectin-1, a protein of lectin family showing affinity towards β-galactosides has emerged as a critical regulator of tumor progression and metastasis, by modulating diverse biological events including homotypic cell aggregation, migration, apoptosis, angiogenesis and immune escape. Therefore, galectin-1 inhibitors might represent novel therapeutic agents for cancer. Methods: A new series of heterocyclic imines linked coumarin-thiazole hybrids (6a-6r) was synthesized and evaluated for its cytotoxic potential against a panel of six human cancer cell lines namely, lung (A549), prostate (DU-145), breast (MCF-7 & MDA-MB-231), colon (HCT-15 & HT-29) using MTT assay. Characteristic apoptotic assays like DAPI staining, cell cycle, annexin V and Mitochondrial membrane potential studies were performed for the most active compound. Furthermore, Gal-1 inhibition was confirmed by ELISA and fluorescence spectroscopy. Results: Among all, compound 6g 3-(2-(2-(pyridin-2-ylmethylene) hydrazineyl) thiazol-4-yl)-2H-chromen-2- one exhibited promising growth inhibition against HCT-15 colorectal cancer cells with an IC50 value of 1.28 ± 0.14 µM. The characteristic apoptotic morphological features like chromatin condensation, membrane blebbing and apoptotic body formation were clearly observed with compound 6g on HCT-15 cells using DAPI staining studies. Further, annexin V-FITC/PI assay confirmed effective early apoptosis induction by treatment with compound 6g. Loss of mitochondrial membrane potential and enhanced ROS generation were confirmed with JC-1 and DCFDA staining method, respectively by treatment with compound 6g, suggesting a possible mechanism for inducing apoptosis. Moreover, flow cytometric analysis revealed that compound 6g blocked G0/G1 phase of the cell cycle in a dose-dependent manner. Compound 6g effectively reduced the levels of Gal-1 protein in a dose-dependent manner. The binding constant (Ka) of 6g with Gal-1 was calculated from the intercept value which was observed as 1.9 x 107 M-1 by Fluorescence spectroscopy. Molecular docking studies showed strong interactions of compound 6g with Gal-1 protein. Conclusion: Our studies demonstrate the anticancer potential and Gal-1 inhibition of heterocyclic imines linked coumarin-thiazole hybrids.


2019 ◽  
Vol 19 (5) ◽  
pp. 599-609 ◽  
Author(s):  
Sumathi Sundaravadivelu ◽  
Sonia K. Raj ◽  
Banupriya S. Kumar ◽  
Poornima Arumugamand ◽  
Padma P. Ragunathan

Background: Functional foods, neutraceuticals and natural antioxidants have established their potential roles in the protection of human health and diseases. Thymoquinone (TQ), the main bioactive component of Nigella sativa seeds (black cumin seeds), a plant derived neutraceutical was used by ancient Egyptians because of their ability to cure a variety of health conditions and used as a dietary food supplement. Owing to its multi targeting nature, TQ interferes with a wide range of tumorigenic processes and counteracts carcinogenesis, malignant growth, invasion, migration, and angiogenesis. Additionally, TQ can specifically sensitize tumor cells towards conventional cancer treatments (e.g., radiotherapy, chemotherapy, and immunotherapy) and simultaneously minimize therapy-associated toxic effects in normal cells besides being cost effective and safe. TQ was found to play a protective role when given along with chemotherapeutic agents to normal cells. Methods: In the present study, reverse in silico docking approach was used to search for potential molecular targets for cancer therapy. Various metastatic and apoptotic targets were docked with the target ligand. TQ was also tested for its anticancer activities for its ability to cause cell death, arrest cell cycle and ability to inhibit PARP gene expression. Results: In silico docking studies showed that TQ effectively docked metastatic targets MMPs and other apoptotic and cell proliferation targets EGFR. They were able to bring about cell death mediated by apoptosis, cell cycle arrest in the late apoptotic stage and induce DNA damage too. TQ effectively down regulated PARP gene expression which can lead to enhanced cancer cell death. Conclusion: Thymoquinone a neutraceutical can be employed as a new therapeutic agent to target triple negative breast cancer which is otherwise difficult to treat as there are no receptors on them. Can be employed along with standard chemotherapeutic drugs to treat breast cancer as a combinatorial therapy.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1690
Author(s):  
Romeo Romagnoli ◽  
Filippo Prencipe ◽  
Paola Oliva ◽  
Barbara Cacciari ◽  
Jan Balzarini ◽  
...  

Two novel series of compounds based on the 4,5,6,7-tetrahydrothieno[2,3-c]pyridine and 4,5,6,7-tetrahydrobenzo[b]thiophene molecular skeleton, characterized by the presence of a 3′,4′,5′-trimethoxyanilino moiety and a cyano or an alkoxycarbonyl group at its 2- or 3-position, respectively, were designed, synthesized, and evaluated for antiproliferative activity on a panel of cancer cell lines and for selected highly active compounds, inhibition of tubulin polymerization, and cell cycle effects. We have identified the 2-(3′,4′,5′-trimethoxyanilino)-3-cyano-6-methoxycarbonyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivative 3a and its 6-ethoxycarbonyl homologue 3b as new antiproliferative agents that inhibit cancer cell growth with IC50 values ranging from 1.1 to 4.7 μM against a panel of three cancer cell lines. Their interaction with tubulin at micromolar levels leads to the accumulation of cells in the G2/M phase of the cell cycle and to an apoptotic cell death. The cell apoptosis study found that compounds 3a and 3b were very effective in the induction of apoptosis in a dose-dependent manner. These two derivatives did not induce cell death in normal human peripheral blood mononuclear cells, suggesting that they may be selective against cancer cells. Molecular docking studies confirmed that the inhibitory activity of these molecules on tubulin polymerization derived from binding to the colchicine site.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1741-1741
Author(s):  
Steffen Klippel ◽  
Jana Jakubikova ◽  
Jake Delmore ◽  
Melissa G. Ooi ◽  
Douglas McMillin ◽  
...  

Abstract Abstract 1741 Poster Board I-767 Background In contrast to most normal cells, cancer cells typically produce energy predominantly by glycolysis as demonstrated by O. Warburg more than 50 years ago. Methyljasmonate (MJ), a hormone produced by plants in response to biotic & abiotic stresses such as herbivory and wounding, has been shown to prevent the interaction of hexokinase (Hxk) and voltage dependent anion channels (VDACs), thereby significantly impacting the onset of glycolytic energy production. This may explain promising preclinical results observed with MJ against a variety of cancer cells, including myeloid leukemia and B-cell lymphoma cell lines. Methods and Results We tested the potential of MJ against Multiple Myeloma (MM) cells. We first evaluated the response of 16 different MM cell lines to 24 h of exposure to MJ concentrations of 0.5 – 3.5 mM using MTT assays. 15/16 of the MM cell lines tested displayed an IC50 of < 1.5 mM. In contrast, HS-5 stroma cells and peripheral blood mononuclear cells (PBMCs) did not respond to that MJ concentration, and even at a concentration of 2.5 mM MJ showed a maximal reduction of cell viability of 40%. Similarly to MM cell lines, purified CD138+ primary tumor cells of 3 MM patients displayed an IC50 of < 1.5 mM, suggesting that the differential sensitivity of MM vs. normal cells to MJ is not restricted to cell lines, but is also observed with primary tumor cells. Importantly, neither co-culture with HS-5 stroma nor IL-6 protected MM cells against MJ. Cell death commitment assays revealed that 1h exposure of 1.5 mM MJ induced cell death. Annexin V/PI FACS analysis of MJ-exposed MM cells showed that the cell death is mainly driven by apoptosis, evidenced by cleavage of caspases 3, 8 and 9 as well as of PARP. However, pre-incubation of MM cells with specific caspase inhibitors such as 10 mM of AC-DEVD-CHO, Z-IETD-fmk, Z-LEHD-fmk or 50 mM of Z-VAD only minimally protects the cancer cells from MJ exposure. Therefore, the impact of the MJ is not solely due to caspase triggered proteolytic cascades. Measurements of cellular ATP content by cell titer glow (CTG; Promega, Madison, WI) assay showed rapid depletion of ATP triggered by MJ action in sensitive MM cell lines. Additionally, we observed that 1 h exposure to 2 mM MJ modulated signaling pathways including IRS1/PI3K/AKT, MEK1/2, as well as Stat3 and JNK. FACS-based cell cycle analysis after propidium iodide staining did not show cell cycle arrest, but rather a rapid transition of cells to G0/G1 No correlation of sensitivity of MM cell lines and the number of mitochondria per cancer cell, as determined by Mitotracker Green (Invitrogen, Carlsbad, CA) -based flow analysis, was observed. We next examined if MJ exhibits either significant antagonism or synergy with established or novel anti-MM agents, including Bortezomib, Lenalidomide, Doxorubicin, Rapamycin or Dexamethasone, but discovered neither. However, MJ displayed synergy when combined with 2-Deoxyglucose. Finally, MJ was tested in vivo in scid/nod mice irradiated with 150 rads, injected with 1× 106 MM1S cells, and then, treated at 500 mg/kg by IP administration on a 5 days on / 2 days off schedule starting two weeks after tumor cell injection, There was an overall survival advantage of MJ-treated animals over the respective controls, with all treated mice (n=10) still alive but 6/10 control mice dead after 27 d. Conclusions Based on its rapidity of anti-MM action, favorable safety profile in preclinical models, distinct pattern of molecular sequelae, and compatibility with established anti-MM agents, MJ represents a promising investigational anti-MM agent. Disclosures Laubach: Novartis: Consultancy, Honoraria. Richardson:Millennium: (Speakers Bureau up to 7/1/09), Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: (Speakers Bureau up to 7/1/09), Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Anderson:Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Mitsiades:Novartis Pharmaceuticals: Consultancy, Honoraria; Milllennium: Consultancy, Honoraria; Bristol-Myers Squibb : Consultancy, Honoraria; Merck &Co.: Consultancy, Honoraria; Kosan Pharmaceuticals : Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; PharmaMar: Patents & Royalties; Amgen: Research Funding; AVEO Pharma: Research Funding; EMD Serono: Research Funding; Sunesis Pharmaceuticals: Research Funding.


Author(s):  
Giuseppe Guerrisi ◽  
Deborah Giordano ◽  
Anna Marabotti ◽  
Giancarlo Raiconi ◽  
Roberto Tagliaferri

Motivation: The term “cell culture” is generally referred to the process by which some cells, often derived from multicellular organisms or tissues, or tumoral cell lines, are grown under controlled conditions outside of their natural environment. This system is very useful for different applications, for example to study physiological phenomena, or for the production of some useful molecules, or for testing the toxicity of some compounds. The life of the cells in culture is conditioned by many elements. Apart from physical factors such as pH and temperature, the growth of a cell culture is conditioned by its density: cells compete for the nutrients and growth factors available and die when they are exhausted. Moreover, dead cells release in the medium some toxic factors that, in their turn, can lead the surrounding cells to death. Additionally, the presence of exogenous toxic factors in the medium can induce cell death We present a cellular automata developed in order to reproduce the growth of a cell culture of a particular human cell line, Caco-2, derived from human colorectal adenocarcinoma cells. The cellular automata has been developed in order to reproduce the phenotype of Caco-2 cells, their cell cycle with all phases, and the influence of 4-nonylphenol (4-NP), an environmental pollutant, on this model system. Methods: The cellular automata developed is a grid whose dimensions reproduce a cell counting Burker chamber. Two matrices have been used to take into account, respectively, the global duration of the cellular growth and the phase of the cell cycle for each cell. Two vectors are also introduced to take into account the length of each phase and their variability range. A shuffling algorithm is used to distribute the starting cells on the chamber, then the algorithm starts by assigning a variable lag phase before reproducing the start of the cell cycle with the entering of the cells in G1 phase. All the following phases of the cell cycle are characterized by a fixed length (in minutes) + 10% variability. The cell death is described by a logarithmic function that is influenced by different factors: culture density, cellular senescence, presence of dead cells in the environment of each cell, introduction of a toxic substance. The application was developed in a stand-alone manner and has been written in Java using the OpenGL library integrated in Java. Results The application is made by an intuitive GUI to set several parameters useful for the simulation (see Figure, panel A). In order to highlight the different cell cycle phases, different colors were attributed to each phase. The cellular automata is evolving in the space and in the time reproducing the four steps of the cell cycle (G1, S, G2, M). The evolution of the simulated cell growth reproduces the phenomena present in a real Caco-2 cell culture. (Abstract truncated at 3,000 characters - the full version is available in the pdf file)


2018 ◽  
Vol 18 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Zahra Shahsavari ◽  
Fatemeh Karami-Tehrani ◽  
Siamak Salami

Background: Recognition of a new therapeutic agent may activate an alternative programmed cell death for the treatment of breast cancer. Objective: Here, it has been tried to evaluate the effects of Shikonin, a naphthoquinone derivative of Lithospermum erythrorhizon, on the induction of necroptosis and apoptosis mediated by RIPK1-RIPK3 in the ER+ breast cancer cell line, MCF-7. Methods: In the current study, cell death modalities, cell cycle patterns, RIPK1 and RIPK3 expressions, caspase-3 and caspase-8 activities, reactive oxygen species and mitochondrial membrane potential have been evaluated in the Shikonin-treated MCF-7 cells. Results: Necroptosis and apoptosis have been occurred by Shikonin, with a significant increase in RIPK1 and RIPK3 expressions, although necroptosis was the major rout in MCF-7 cells. Shikonin significantly increased the percentage of the cells in sub-G1 and also those in the later stages of cell cycle, which represents an increase in necroptosis and apoptosis. Under caspase inhibition by Z-VAD-FMK, Shikonin has stimulated necroptosis, which could be arrested by Nec-1. An increase in ROS levels and a decrease in the mitochondrial membrane potential have also been observed. Conclusion: On the basis of present findings, Shikonin has been suggested as a good candidate for the induction of cell death in ER+ breast cancer, although further investigations, experimental and clinical, are required.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2733 ◽  
Author(s):  
Nurhisyam Zakaria ◽  
Mohamad Mahdzir ◽  
Mahfuzah Yusoff ◽  
Norhafiza Mohd Arshad ◽  
Khalijah Awang ◽  
...  

Background: Pinnatane A from the bark of Walsura pinnata was investigated for its anti-cancer properties by analyzing the cytotoxic activities and cell cycle arrest mechanism induced in two different liver cancer cell lines. Methods: A 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to analyze the pinnatane A selectivity in inducing cell death in cancer and normal cells. Various biological assays were carried out to analyze the anti-cancer properties of pinnatane A, such as a live/dead assay for cell death microscopic visualization, cell cycle analysis using propidium iodide (PI) to identify the cell cycle arrest phase, annexin V-fluorescein isothiocyanate (annexin V-FITC)/PI flow cytometry assay to measure percentage of cell populations at different stages of apoptosis and necrosis, and DNA fragmentation assay to verify the late stage of apoptosis. Results: The MTT assay identified pinnatane A prominent dose- and time-dependent cytotoxicity effects in Hep3B and HepG2 cells, with minimal effect on normal cells. The live/dead assay showed significant cell death, while cell cycle analysis showed arrest at the G0/G1 phase in both cell lines. Annexin V-FITC/PI flow cytometry and DNA fragmentation assays identified apoptotic cell death in Hep3B and necrotic cell death in HepG2 cell lines. Conclusions: Pinnatane A has the potential for further development as a chemotherapeutic agent prominently against human liver cells.


2020 ◽  
Vol 20 (3) ◽  
pp. 301-314 ◽  
Author(s):  
Leonard Barasa ◽  
Hari P. Vemana ◽  
Nirupama Surubhotla ◽  
Sin S. Ha ◽  
Jing Kong ◽  
...  

Background and Objective : Drug resistance and adverse effects are immense healthcare challenges in cancer therapy. Benzimidazole ring-based small molecules have been effective anticancer agents in drug development. In an effort to develop novel chemotherapeutics, we synthesized and assessed the anticancer and antibacterial activities of a small library of structurally unique benzimidazoles. Methods : The benzimidazoles were derived from indole, N-alkyl indole, fatty acid, and alpha-amino acid scaffolds providing a panel of diverse structures. The compounds were tested in three different cancer cell lines for cytotoxicity: HepG2 (human hepatocellular carcinoma), HeLa (human cervical carcinoma), and A549 (human lung carcinoma). Mechanism of cell death induced by benzimidazoles was evaluated using fluorescent dye-based apoptosis-necrosis assay, immunoblotting for active caspases, topoisomerase-II activity assay, and cell cycle assay. Results : Cell viability testing revealed that indole- and fatty acid-based benzimidazoles were most potent followed by the amino acid derivatives. Many compounds induced cytotoxicity in a concentration-dependent manner with cellular cytotoxicity (CC50) <20μM in the cell lines tested. Most compounds exhibited cytotoxicity via apoptosis through the intrinsic pathway. Inhibition of topoisomerase activity and cell cycle alterations were not the primary mechanisms of cytotoxicity. In addition, several compounds showed promising activity against S. aureus and S. epidermidis (Minimum Inhibitory Concentration (MIC) of as low as 0.04μmol/mL). Conclusion: The reported benzimidazole derivatives possess promising anticancer and antibacterial properties. Additionally, we discovered apoptosis to be the primary mechanism for cancer cell death induced by the tested benzimidazoles. Our findings suggest that further development of these scaffolds could provide drug leads towards new chemotherapeutics.


Sign in / Sign up

Export Citation Format

Share Document