scholarly journals atpD gene sequencing, multidrug resistance traits, virulence-determinants, and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdelazeem M. Algammal ◽  
Hany R. Hashem ◽  
Khyreyah J. Alfifi ◽  
Helal F. Hetta ◽  
Norhan S. Sheraba ◽  
...  

AbstractProteus mirabilis is a common opportunistic pathogen causing severe illness in humans and animals. To determine the prevalence, antibiogram, biofilm-formation, screening of virulence, and antimicrobial resistance genes in P. mirabilis isolates from ducks; 240 samples were obtained from apparently healthy and diseased ducks from private farms in Port-Said Province, Egypt. The collected samples were examined bacteriologically, and then the recovered isolates were tested for atpD gene sequencing, antimicrobial susceptibility, biofilm-formation, PCR detection of virulence, and antimicrobial resistance genes. The prevalence of P. mirabilis in the examined samples was 14.6% (35/240). The identification of the recovered isolates was confirmed by the atpD gene sequencing, where the tested isolates shared a common ancestor. Besides, 94.3% of P. mirabilis isolates were biofilm producers. The recovered isolates were resistant to penicillins, sulfonamides, β-Lactam-β-lactamase-inhibitor-combinations, tetracyclines, cephalosporins, macrolides, and quinolones. Using PCR, the retrieved strains harbored atpD, ureC, rsbA, and zapA virulence genes with a prevalence of 100%, 100%, 94.3%, and 91.4%, respectively. Moreover, 31.4% (11/35) of the recovered strains were XDR to 8 antimicrobial classes that harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Besides, 22.8% (8/35) of the tested strains were MDR to 3 antimicrobial classes and possessed blaTEM, tetA, and sul1genes. Furthermore, 17.1% (6/35) of the tested strains were MDR to 7 antimicrobial classes and harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Alarmingly, three strains were carbapenem-resistant that exhibited PDR to all the tested 10 antimicrobial classes and shared blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Of them, two strains harbored the blaNDM-1 gene, and one strain carried the blaKPC gene. In brief, to the best of our knowledge, this is the first study demonstrating the emergence of XDR and MDR-P.mirabilis in ducks. Norfloxacin exhibited promising antibacterial activity against the recovered XDR and MDR-P. mirabilis. The emergence of PDR, XDR, and MDR-strains constitutes a threat alarm that indicates the complicated treatment of the infections caused by these superbugs.

2020 ◽  
Author(s):  
Saba Asgharzadeh Marghmalek ◽  
Reza Valadan ◽  
Mehrdad Gholami ◽  
Mohtaram Nasrolahei ◽  
Hamid Reza Goli

Abstract Background: The role of the hospital environment as a source of pathogenic bacteria in recent studies has been poorly investigated. This study investigated the distribution of antimicrobial resistance genes and virulence determinants in Enterococcus species isolated from hospital environment in Sari, Iran. Method: Overall, 90 enterococci strains were obtained from high touch surfaces of four hospitals in Sari, Iran. These environmental samples were obtained from bathroom, beds, tables, doorknobs, room keys, wheelchair and walls in the patient and staff’s rooms. The resistance profile of the isolates was determined by disk diffusion method. Seven resistance genes and two virulence associated genes were evaluated molecularly by multiplex PCR. Results: According to the PCR, 42 (46.66%) of them were E. faecalis and 48 (53.33%) others were detected as E. faecium. Also, 28 (66.6%) E. faecalis and 18 (37.5%) E. faecium isolates were multidrug-resistant (MDR). Among all 90 environmental isolates 54 (60%), 54 (60%), 8 (8.8%), 8 (8.8%), 60 (66.6%), 26 (28.8%), and 24 (26.6%) isolates contained tetM, tetL, vanA, vanB, ermB, aac(6´)-Ie-aph(2´´)-Ia, and aph (3´)-IIIa, respectively. Moreover, all isolates were investigated for the presence of virulence genes and 88 (97.7%) of isolates had esp gene, and 16 (17.7%) had ace.Conclusions: This report showed that the environmental isolates of Enterococcus are the major sources of antibiotic resistance genes that can transfer them to the clinical isolates of bacteria in hospital settings. An effective following strategy should be organized to clearance and stop emergence of these pathogenic bacteria.


Author(s):  
Nabil Karah ◽  
Fizza Khalid ◽  
Sun Nyunt Wai ◽  
Bernt Eric Uhlin ◽  
Irfan Ahmad

Abstract Background Acinetobacter baumannii is a Gram-negative opportunistic pathogen with a notorious reputation of being resistant to antimicrobial agents. The capability of A. baumannii to persist and disseminate between healthcare settings has raised a major concern worldwide. Methods Our study investigated the antibiotic resistance features and molecular epidemiology of 52 clinical isolates of A. baumannii collected in Pakistan between 2013 and 2015. Antimicrobial susceptibility patterns were determined by the agar disc diffusion method. Comparative sequence analyses of the ampC and blaOXA-51-like alleles were used to assign the isolates into clusters. The whole genomes of 25 representative isolates were sequenced using the MiSeq Desktop Sequencer. Free online applications were used to determine the phylogeny of genomic sequences, retrieve the multilocus sequence types (ST), and detect acquired antimicrobial resistance genes. Results Overall, the isolates were grouped into 7 clusters and 3 sporadic isolates. The largest cluster, Ab-Pak-cluster-1 (blaOXA-66 and ISAba1-ampC-19) included 24 isolates, belonged to ST2 and International clone (IC) II, and was distributed between two geographical far-off cities, Lahore and Peshawar. Ab-Pak-clusters-2 (blaOXA-66, ISAba1-ampC-2), and -3 (blaOXA-66, ISAba1-ampC-20) and the individual isolate Ab-Pak-Lah-01 (ISAba1-blaOXA-66, ISAba1-ampC-2) were also assigned to ST2 and IC II. On the other hand, Ab-Pak-clusters-4 (blaOXA-69, ampC-1), -5 (blaOXA-69, ISAba1-ampC-78), and -6A (blaOXA-371, ISAba1-ampC-3) belonged to ST1, while Ab-Pak-cluster-6B (blaOXA-371, ISAba1-ampC-8) belonged to ST1106, with both ST1 and ST1106 being members of IC I. Five isolates belonged to Ab-Pak-cluster-7 (blaOXA-65, ampC-43). This cluster corresponded to ST158, showed a well-delineated position on the genomic phylogenetic tree, and was equipped with several antimicrobial resistance genes including blaOXA-23 and blaGES-11. Conclusions Our study detected the occurrence of 7 clusters of A. baumannii in Pakistan. Altogether, 6/7 of the clusters and 45/52 (86.5%) of the isolates belonged to IC I (n = 9) or II (n = 36), making Pakistan no exception to the global domination of these two clones. The onset of ST158 in Pakistan marked a geographical dispersal of this clone beyond the Middle East and brought up the need for a detailed characterization.


2020 ◽  
Author(s):  
Saba Asgharzadeh Marghmalek ◽  
Reza Valadan ◽  
Mehrdad Gholami ◽  
Mohtaram Nasrolahei ◽  
Hamid Reza Goli

Abstract Background: The role of the hospital environment as a source of pathogenic bacteria in recent studies has been poorly investigated. This study investigated the distribution of antimicrobial resistance genes and virulence determinants in Enterococcus species isolated from hospital environment in Sari, Iran. A total of 90 enterococci isolates were identified and species identification confirmed with specific primers. Seven resistance genes and two virulence associated genes were evaluated molecularly by multiplex polymerase chain reaction. Results: Of the 90 enterococcal isolates, 42 (46.66%), and 48 (53.33%) were identified as E. faecalis, and E. faecium, respectively. Also, 28 (66.6%) E. faecalis and 18 (37.5%) E. faecium isolates were multidrug-resistant (MDR). Among all 90 environmental isolates 54 (60%), 54 (60%), 8 (8.8%), 8 (8.8%), 60 (66.6%), 26 (28.8%), and 24 (26.6%) isolates contained tetM, tetL, vanA, vanB, ermB, aac (6´)-Ie-aph (2´´)-Ia, and aph (3´)-IIIa, respectively. Moreover, 88 (97.7%) and 16 (17.7%) isolates were detected as esp and ace positive ones, correspondingly. Conclusions: This report showed that the environmental isolates of Enterococcus are the major sources of antibiotic resistance genes that can transfer them to the clinical isolates of bacteria in hospital settings. An effective following strategy should be organized to clearance and stop emergence of these pathogenic bacteria.


2011 ◽  
Vol 6 (03) ◽  
pp. 242-250 ◽  
Author(s):  
Moses S Okee ◽  
Moses L Joloba ◽  
Margaret Okello ◽  
Florence Christine Najjuka ◽  
Fred Ashaba Katabazi ◽  
...  

Introduction: Staphylococcus epidermidis is often considered a non-pathogenic organism but it causes nosocomial infections. To distinguish invasive strains, comparative studies of patient and community isolates may offer some clues. We investigated the distribution of virulence determinants in patient isolates from Uganda. Methodology: S. epidermidis isolates were identified with the Staph API ID 32 kit. Antimicrobial susceptibility, biofilm formation and hemolysis were detected with standard procedures. Genes associated with virulence (aap, atlE, bhp, hla, hld, ica, IS256, sdrE, sea, tsst) and antimicrobial resistance (aac(6')-Ie-aph(2'')-Ia, aph(3')-IIIa, ant(4')-Ia, blaZ, mecA, vanA/vanB1) were detected by PCR. Results: S. epidermidis grew in 30 (30/50, 60%) ICU samples and 20 (20/60, 33%) community samples (one isolate per sample per patient/person). All ICU isolates (30/30, 100%) were IS256 and hld positive, 22 (22/30, 73%) were biofilm/ica positive, 21 (21/30, 70%) were hemolytic on blood agar, nine (9/30, 30%) contained atlE gene, six (6/30, 20%) hla gene, five (5/30, 17%) aap gene, and three (3/30, 10%) bhp gene. A gene encoding an aminoglycoside-modifying enzyme, aph(3')-IIIa, was highly prevalent (28/30, 93%), while blaZ (2/30, 7%), mecA (3/30, 10%), vanA (3/30, 10%) and vanB1 (3/30, 10%) were less  prevalent. Of the community isolates, one (1/20, 5%) was ica positive, two (2/20, 10%) formed biofilms, and three (3/20, 15%) possessed the atlE gene. bhp, aap, IS256, hld and antimicrobial resistance genes were not detected in community isolates. Conclusions: S. epidermidis from ICU patients in Mulago Hospital is potentially virulent and could be a reservoir for antimicrobial resistant genes.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 854
Author(s):  
Alice Wegener ◽  
Els M. Broens ◽  
Linda van der Graaf-van Bloois ◽  
Aldert L. Zomer ◽  
Caroline E. Visser ◽  
...  

Staphylococcus pseudintermedius is an important pathogen in dogs that occasionally causes infections in humans as an opportunistic pathogen of elderly and immunocompromised people. This study compared the genomic relatedness and antimicrobial resistance genes using genome-wide association study (GWAS) to examine host association of canine and human S. pseudintermedius isolates. Canine (n = 25) and human (n = 32) methicillin-susceptible S. pseudintermedius (MSSP) isolates showed a high level of genetic diversity with an overrepresentation of clonal complex CC241 in human isolates. This clonal complex was associated with carriage of a plasmid containing a bacteriocin with cytotoxic properties, a CRISPR-cas domain and a pRE25-like mobile element containing five antimicrobial resistance genes. Multi-drug resistance (MDR) was predicted in 13 (41%) of human isolates and 14 (56%) of canine isolates. CC241 represented 54% of predicted MDR isolates from humans and 21% of predicted MDR canine isolates. While it had previously been suggested that certain host-specific genes were present the current GWAS analysis did not identify any genes that were significantly associated with human or canine isolates. In conclusion, this is the first genomic study showing that MSSP is genetically diverse in both hosts and that multidrug resistance is important in dog and human-associated S. pseudintermedius isolates.


2018 ◽  
Vol 62 (4) ◽  
pp. e02192-17 ◽  
Author(s):  
Yan-Peng Chen ◽  
Chang-Wei Lei ◽  
Ling-Han Kong ◽  
Jin-Xin Zeng ◽  
Xiu-Zhong Zhang ◽  
...  

ABSTRACT A novel 65.8-kb multidrug resistance transposon, designated Tn6450, was characterized in a Proteus mirabilis isolate from chicken in China. Tn6450 contains 18 different antimicrobial resistance genes, including cephalosporinase gene blaDHA-1 and fluoroquinolone resistance genes qnrA1 and aac(6′)-Ib-cr. It carries a class 1/2 hybrid integron composed of intI2 and a 3′ conserved segment of the class 1 integron. Tn6450 is derived from Tn7 via acquisition of new mobile elements and resistance genes.


2022 ◽  
Vol 12 ◽  
Author(s):  
Victoria Ballén ◽  
Yaiza Gabasa ◽  
Carlos Ratia ◽  
Melany Sánchez ◽  
Sara Soto

Escherichia coli is a well-characterized bacterium highly prevalent in the human intestinal tract and the cause of many important infections. The aim of this study was to characterize 376 extraintestinal pathogenic E. coli strains collected from four hospitals in Catalonia (Spain) between 2016 and 2017 in terms of antimicrobial resistance, siderophore production, phylogroup classification, and the presence of selected virulence and antimicrobial resistance genes. In addition, the association between these characteristics and the ability to form biofilms was also analyzed. The strains studied were classified into four groups according to their biofilm formation ability: non-biofilm formers (15.7%), weak (23.1%), moderate (35.6%), and strong biofilm formers (25.6%). The strains were highly resistant to ciprofloxacin (48.7%), trimethoprim-sulfamethoxazole (47.9%), and ampicillin (38%), showing a correlation between higher resistance to ciprofloxacin and lower biofilm production. Seventy-three strains (19.4%) were ESBL-producers. However, no relationship between the presence of ESBL and biofilm formation was found. The virulence factor genes fimH (92%), pgaA (84.6%), and irp1 (77.1%) were the most prevalent in all the studied strains. A statistically significant correlation was found between biofilm formation and the presence of iroN, papA, fimH, sfa, cnf, hlyA, iutA, and colibactin-encoding genes clbA, clbB, clbN, and clbQ. Interestingly, a high prevalence of colibactin-encoding genes (19.9%) was observed. Colibactin is a virulence factor, which interferes with the eukaryotic cell cycle and has been associated with colorectal cancer in humans. Most colibactin-encoding E. coli isolates belonged to phylogroup B2, exhibited low antimicrobial resistance but moderate or high biofilm-forming ability, and were significantly associated with most of the virulence factor genes tested. Additionally, the analysis of their clonal relatedness by PFGE showed 48 different clusters, indicating a high clonal diversity among the colibactin-positive strains. Several studies have correlated the pathogenicity of E. coli and the presence of virulence factor genes; however, colibactin and its relationship to biofilm formation have been scarcely investigated. The increasing prevalence of colibactin in E. coli and other Enterobacteriaceae and the recently described correlation with biofilm formation, makes colibactin a promising therapeutic target to prevent biofilm formation and its associated adverse effects.


2021 ◽  
Vol 9 (9) ◽  
pp. 1880
Author(s):  
Radwa Abdelwahab ◽  
Munirah M. Alhammadi ◽  
Ehsan A. Hassan ◽  
Entsar H. Ahmed ◽  
Nagla H. Abu-Faddan ◽  
...  

Klebsiella pneumoniae is an important human pathogen in both developing and industrialised countries that can causes a variety of human infections, such as pneumonia, urinary tract infections and bacteremia. Like many Gram-negative bacteria, it is becoming resistant to many frontline antibiotics, such as carbapenem and cephalosporin antibiotics. In Egypt, K. pneumoniae is increasingly recognised as an emerging pathogen, with high levels of antibiotic resistance. However, few Egyptian K. pneumoniae strains have been sequenced and characterised. Hence, here, we present the genome sequence of a multidrug resistant K. pneumoniae strain, KPE16, which was isolated from a child in Assiut, Egypt. We report that it carries multiple antimicrobial resistance genes, including a blaNDM-1 carbapenemase and extended spectrum β-lactamase genes (i.e., blaSHV-40, blaTEM-1B, blaOXA-9 and blaCTX-M-15). By comparing this strain with other Egyptian isolates, we identified common plasmids, resistance genes and virulence determinants. Our analysis suggests that some of the resistance plasmids that we have identified are circulating in K. pneumoniae strains in Egypt, and are likely a source of antibiotic resistance throughout the world.


Sign in / Sign up

Export Citation Format

Share Document