scholarly journals Free fatty acids, glicentin and glucose-dependent insulinotropic polypeptide as potential major determinants of fasting substrate oxidation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julia Hummel ◽  
Louise Fritsche ◽  
Andreas Vosseler ◽  
Corinna Dannecker ◽  
Miriam Hoene ◽  
...  

AbstractThe selection of carbohydrates or fat to generate intracellular energy is thought to be crucial for long-term metabolic health. While most studies assess fuel selection after a metabolic challenge, the determinants of substrate oxidation in the fasted state remain largely unexplored. We therefore assessed the respiratory quotient by indirect calorimetry as a read-out for substrate oxidation following an overnight fast. This cross-sectional analysis consisted of 192 (92 women, 100 men) either lean or obese participants. Following an overnight fast, the respiratory quotient (RQ) was assessed, after which a 5-point 75-g oral glucose tolerance test was performed. Unlike glucose and insulin, fasting free fatty acids (FFA) correlated negatively with fasting RQ (p < 0.0001). Participants with high levels of the ketone body β-hydroxybutyric acid had significantly lower RQ values. Fasting levels of glucose-dependent insulinotropic polypeptide (GIP) and glicentin were positively associated with fasting RQ (all p ≤ 0.03), whereas GLP-1 showed no significant association. Neither BMI, nor total body fat, nor body fat distribution correlated with fasting RQ. No relationship between the RQ and diabetes or the metabolic syndrome could be observed. In the fasting state, FFA concentrations were strongly linked to the preferentially oxidized substrate. Our data did not indicate any relationship between fasting substrate oxidation and metabolic diseases, including obesity, diabetes, and the metabolic syndrome. Since glicentin and GIP are linked to fuel selection in the fasting state, novel therapeutic approaches that target these hormones may have the potential to modulate substrate oxidation.

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 534-534
Author(s):  
Afsoun Abdollahi ◽  
Brianana N Dowden ◽  
Gregory C Henderson

Abstract Objectives To improve understanding of the control of lipid metabolism, we aimed to determine whether lack of serum albumin decreases plasma free fatty acids (FFA), hepatic triacylglycerol (TAG), and whole body substrate oxidation in albumin knockout mice compared to wild type mice. Methods Male and female homozygous albumin knockout mice and C57BL/6J wild type controls, each on the 5k52 diet which contains a moderate fat content, were studied at 6–8 weeks of age. Body composition was tested by magnetic resonance. Substrate oxidation was measured by indirect calorimetry over 24 hours in metabolic cages. Plasma and tissues were collected after a 5-hour fast. Plasma FFA was measured by liquid chromatography/mass spectrometry (LC/MS). Hepatic TAG was measured by a colorimetric kit. Results In albumin knockout mice compared to the wild type mice, plasma FFA (P &lt; 0.0001) and hepatic TAG content (P &lt; 0.0001) were each reduced, while body fat percentage was increased (P &lt; 0.01). In addition, female versus male showed higher hepatic TAG levels (P &lt; 0.01). These results indicate that the lack of serum albumin decreases plasma FFA and hepatic TAG accumulation. However, the average 24-hour oxygen consumption, metabolic rate, and respiratory quotient (RQ) were not altered in albumin knockout mice, indicating that total fuel oxidation and relative contribution of lipid to whole body metabolism was not significantly unaltered. Conclusions We propose that lack of albumin reduces plasma FFA which diminishes hepatic TAG content through changes in the lipid supply to the liver. The results indicate that tissue lipid accumulation can be altered by targeting albumin without substantially disrupting whole body substrate oxidation, suggesting that metabolic control of FFA trafficking toward sites of ectopic lipid deposition and toward oxidation can be regulated independently of one another. Funding Sources McKinley Educational Initiative and the Purdue University College of Health and Human Sciences


2010 ◽  
Vol 37 (6) ◽  
pp. 1418-1423 ◽  
Author(s):  
A. Barcelo ◽  
J. Pierola ◽  
M. de la Pena ◽  
C. Esquinas ◽  
A. Fuster ◽  
...  

2000 ◽  
Vol 83 (S1) ◽  
pp. S97-S102 ◽  
Author(s):  
Thomas M. S. Wolever

The metabolic syndrome represents a vicious cycle whereby insulin resistance leads to compensatory hyperinsulinaemia, which maintains normal plasma glucose but may exacerbate insulin resistance. Excess insulin secretion may eventually reduce β-cell function due to amyloid deposition, leading to raised blood glucose and further deterioration of β-cell function and insulin sensitivity via glucose toxicity. Reducing postprandial glucose and insulin responses may be a way to interrupt this process, but there is disagreement about the dietary approach to achieve this. Glucose and insulin responses are determined primarily by the amount of carbohydrate consumed and its rate of absorption. Slowly absorbed, low glycaemic-index (GI) foods are associated with increased HDL cholesterol and reduced risk of type 2 diabetes. There is some evidence that low-GI foods improve insulin sensitivity in humans, although studies using established techniques (glucose clamp or frequently sampled intravenous glucose tolerance test) have not been done. Low carbohydrate diets have been suggested to be beneficial in the treatment of the metabolic syndrome because of reduced postprandial insulin. However, they may increase fasting glucose and impair oral glucose tolerance — effects which define carbohydrate intolerance. The effects of low carbohydrate diets on insulin sensitivity depend on what is used to replace the dietary carbohydrate, and the nature of the subjects studied. Dietary carbohydrates may affect insulin action, at least in part, via alterations in plasma free fatty acids. In normal subjects a high-carbohydrate/low-GI breakfast meal reduced free fatty acids by reducing the undershoot of plasma glucose, whereas low-carbohydrate breakfasts increased postprandial free fatty acids. It is unknown if these effects occur in insulin-resistant or diabetic subjects. Thus further work needs to be done before a firm conclusion can be drawn as to the optimal amount and type of dietary carbohydrate for the treatment of the metabolic syndrome.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2102
Author(s):  
Małgorzata Elżbieta Zujko ◽  
Marta Rożniata ◽  
Kinga Zujko

Modification of lifestyle, including healthy nutrition, is the primary approach for metabolic syndrome (MetS) therapy. The aim of this study was to estimate how individual nutrition intervention affects the reduction of MetS components. Subjects diagnosed with MetS were recruited in the Lomza Medical Centre. The study group consisted of 90 participants and was divided into one intervention group (individual nutrition education group (INEG)) and one control group (CG). The research was conducted over 3 months. The following measurements were obtained during the first visit and after completion of the 3 months intervention: body mass, waist circumference, body composition, blood pressure, fasting glucose, and blood lipids. Dietary assessments were performed before and post-intervention using 3-day 24-h dietary recalls. Dietary knowledge was evaluated with the KomPAN questionnaire. The total polyphenol content of the diet was calculated. Sociodemographic and lifestyle characteristics were collected from a self-reported questionnaire. The physical activity was assessed by the short version of the International Physical Activity Questionnaire (IPAQ). It was found that the individual nutrition education was an effective method to improve the knowledge, dietary habits, and physical activity of the study participants. The modification of the diet in terms of higher intake of polyphenols (flavonoids and anthocyanins), fiber, polyunsaturated fatty acids (PUFA), PUFA n-3, and lower intake of saturated fatty acids (SFA) had a significant impact on the improvement of some MetS risk factors (waist circumference, fasting glucose, and HDL-cholesterol).


2007 ◽  
Vol 103 (5) ◽  
pp. 1576-1582 ◽  
Author(s):  
Edward L. Melanson ◽  
William T. Donahoo ◽  
Gary K. Grunwald ◽  
Robert Schwartz

The purpose of this study was to compare 24-h substrate oxidation in older (OM; 60–75 yr, n = 7) and younger (YM; 20–30 yr, n = 7) men studied on sedentary day (Con) and on a day with exercise (Ex; net energy expenditure = 300 kcal). Plasma glucose and free fatty acids were also measured at several time points during the 24-h measurement. Weight was not different in OM and YM (means ± SD; 84.8 ± 16.9 vs. 81.4 ± 10.4 kg, respectively), although percent body fat was slightly higher in OM (25.9 ± 3.5 vs. 21.9 ± 9.7%; P = 0.17).Values of 24-h energy expenditure did not differ in OM and YM on the Con (means ± SE; 2,449 ± 162 vs. 2,484 ± 104 kcal/day, respectively) or Ex (2,902 ± 154 vs. 2,978 ± 122 kcal/day) days. Under both conditions, 24-h respiratory quotient was significantly lower and fat oxidation significantly higher in OM. Glucose concentrations were not different at any time point, but plasma free fatty acid concentrations were higher in OM, particularly following meals. Thus, under these controlled conditions, 24-h fat oxidation was not reduced and was in fact greater in OM. We speculate that differences in the availability of circulating free fatty acids in the postprandial state contributed to the observed differences in 24-h fat oxidation in OM and YM.


2014 ◽  
Vol 26 (3) ◽  
pp. 221-230 ◽  
Author(s):  
Katrina D. DuBose ◽  
Andrew J. McKune

The relationship between physical activity levels, salivary cortisol, and the metabolic syndrome (MetSyn) score was examined. Twenty-three girls (8.4 ± 0.9 years) had a fasting blood draw, waist circumference and blood pressure measured, and wore an ActiGraph accelerometer for 5 days. Saliva samples were collected to measure cortisol levels. Previously established cut points estimated the minutes spent in moderate, vigorous, and moderate-to-vigorous physical activity. A continuous MetSyn score was created from blood pressure, waist circumference, high-density-lipoprotein (HDL), triglyceride, and glucose values. Correlation analyses examined associations between physical activity, cortisol, the MetSyn score, and its related components. Regression analysis examined the relationship between cortisol, the MetSyn score, and its related components adjusting for physical activity, percent body fat, and sexual maturity. Vigorous physical activity was positively related with 30 min post waking cortisol values. The MetSyn score was not related with cortisol values after controlling for confounders. In contrast, HDL was negatively related with 30 min post waking cortisol. Triglyceride was positively related with 30 min post waking cortisol and area under the curve. The MetSyn score and many of its components were not related to cortisol salivary levels even after adjusting for physical activity, body fat percentage, and sexual maturity.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Yuming Chen ◽  
Fang-fang Zeng ◽  
Jie-sheng Lin ◽  
Gengdong Chen ◽  
Ding Ding ◽  
...  

AbstractIntroductionMany clinical trials showed favorable effects of high-doses supplemental n-3 polyunsaturated fatty acids (PUFA) on cardio-metabolic risk factors. However, limited studies examined the prospective associations of circulating n-3 PUFA with body fat and its distribution, metabolic syndrome (MS), carotid atherosclerosis, and nonalcoholic fatty liver disease (NAFLD) in subjects with habitual diets containing low levels of n-3 PUFA.Materials and MethodsThis community-based prospective study enrolled 4048 participants (40–75 years) at baseline (2008–2010, 2013) from Guangzhou, China. They were followed-up approximately once every 3 years. Fatty acids in erythrocyte membranes were measured at baseline. We determined metabolic syndrome factors, body fat by DXA scanning, carotid intima-media thickness (IMT) and NAFLD by ultrasound at the visits. General information, anthropometric indices, habitual dietary intake and other covariates were assessed at each visit.ResultsAmong the total 4048 subjects, 3075 and 2671 subjects had erythrocyte n-3 PUFA data and completed the first and second follow-ups. Generally, erythrocyte n-3 PUFA were favorably associated with body fat (particularly at abdomen) and its changes, and with the presence and incidence of MS, type 2 diabetes, carotid IMT thickening. The participants with the highest (vs lowest) quartile of n-3 PUFA were associated with -5.81% fat mass (p < 0.001) and -2.11% of fat mass change at the abdomen (Android) area. The adjusted hazards ratios (95% CI) for the highest (vs. lowest) group were 0.74 (0.61, 0.89) (total n-3 PUFA), 0.71 (0.59, 0.86) (docosahexaenoic acid, DHA), 0.78 (0.65, 0.95) (docosapentaenoic acid, DPA), 1.96 (1.60, 2.40) (gamma-linolenic acid, GLA) for MS; 0.70(0.55, 0.90) (total n-3 PUFA), 0.67(0.52,0.87) (DHA) and 0.73(0.57,0.93) (DPA) for bifurcation IMT thickening, 0.57(0.38, 0.86) (eicosapentaenoic acid, EPA) and 0.63 (0.41, 0.95) (DPA) for type 2 diabetes, and 1.18 (1.09, 1.33) (DHA) for alleviated NAFLD. Both higher levels of total and individual marine n-3 PUFAs (DHA, EPA and DPA) were associated with lower blood pressure at baseline and lower changes in diastolic and systolic blood pressure over the follow-up period. Plant n-3 PUFA (α-linolenic acid, ALA) largely had less significant association with the above-mentioned indices as compared with marine n-3 PUFAs.DiscussionHigher proportions of erythrocyte n-3 PUFA (particularly marine sources) was associated with lower body fat, blood pressure and their changes, and lower risks of MS, type 2 diabetes and bifurcation IMT thickening, but higher chance of alleviated NAFLD in middle-aged and older adults.


2021 ◽  
Vol 10 (23) ◽  
pp. 5635
Author(s):  
Graziano Grugni ◽  
Antonio Fanolla ◽  
Fiorenzo Lupi ◽  
Silvia Longhi ◽  
Antonella Saezza ◽  
...  

To verify the accuracy of different indices of glucose homeostasis in recognizing the metabolic syndrome in a group of adult patients with Prader–Willi syndrome (PWS), 102 PWS patients (53 females/49 males), age ±SD 26.9 ± 7.6 yrs, Body Mass Index (BMI) 35.7 ± 10.7, were studied. The following indices were assessed in each subject during an oral glucose tolerance test (OGTT): 1 h (>155 mg/dL) and 2 h (140–199 mg/dL) glucose levels, the oral disposition index (ODI), the insulinogenic index (IGI), the insulin resistance (HOMA-IR) were evaluated at baseline, 1 h and 2 h. Although minor differences among indices were found, according to the ROC analysis, no index performed better in recognizing MetS. Furthermore, the diagnostic threshold levels changed over the years and therefore the age-related thresholds were calculated. The easily calculated HOMA-IR at baseline may be used to accurately diagnose MetS, thus avoiding more complicated procedures.


2012 ◽  
Vol 166 (4) ◽  
pp. 647-655 ◽  
Author(s):  
Nihal Thomas ◽  
Louise G Grunnet ◽  
Pernille Poulsen ◽  
Solomon Christopher ◽  
Rachaproleu Spurgeon ◽  
...  

ObjectiveLow birth weight (LBW) is common in the Indian population and may represent an important predisposing factor for type 2 diabetes (T2D) and the metabolic syndrome. Intensive metabolic examinations in ethnic LBW Asian Indians have been almost exclusively performed in immigrants living outside India. Therefore, we aimed to study the metabolic impact of being born with LBW in a rural non-migrant Indian population.Subjects and methodsOne hundred and seventeen non-migrant, young healthy men were recruited from a birth cohort in a rural part of south India. The subjects comprised 61 LBW and 56 normal birth weight (NBW) men, with NBW men acting as controls. Subjects underwent a hyperinsulinaemic euglycaemic clamp, i.v. and oral glucose tolerance tests and a dual-energy X-ray absorptiometry scan. The parents' anthropometric status and metabolic parameters were assessed.ResultsMen with LBW were shorter (167±6.4 vs 172±6.0 cm,P<0.0001), lighter (51.9±9 vs 55.4±7 kg,P=0.02) and had a reduced lean body mass (42.1±5.4 vs 45.0±4.5 kg,P=0.002) compared with NBW controls. After adjustment for height and weight, the LBW subjects had increased diastolic blood pressure (77±6 vs 75±6 mmHg,P=0.01). Five LBW subjects had impaired glucose tolerance.In vivoinsulin secretion and peripheral insulin action were similar in both the groups. Mothers of the LBW subjects were 3 cm shorter than the control mothers.ConclusionOnly subtle features of the metabolic syndrome and changes in body composition among LBW rural Indians were found. Whether other factors such as urbanisation and ageing may unmask more severe metabolic abnormalities may require a long-term follow-up.


Sign in / Sign up

Export Citation Format

Share Document