scholarly journals Monocyte-derived and M1 macrophages from ankylosing spondylitis patients released higher TNF-α and expressed more IL1B in response to BzATP than macrophages from healthy subjects

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maryam Akhtari ◽  
Seyed Jalal Zargar ◽  
Mahdi Vojdanian ◽  
Ahmadreza Jamshidi ◽  
Mahdi Mahmoudi

AbstractMacrophages participate in the pathogenesis of ankylosing spondylitis (AS) by producing inflammatory cytokines. Extracellular adenosine triphosphate (eATP), released during cell stress, acts through purinergic receptors (P2XR and P2YR) and induces inflammatory responses. We investigated the effect of 2ʹ(3ʹ)-O-(4-benzoyl benzoyl) ATP (BzATP) (a prototypic agonist of P2X7R) on the production of inflammatory cytokines in both monocyte-generated (M2-like) and M1 macrophages from patients and controls. Macrophages were differentiated from isolated periphery-monocytes (n = 14 in each group) by macrophage colony-stimulating factor (M-CSF). Using LPS and IFN-γ, macrophages were skewed toward M1 type and were treated with BzATP. Gene expression and protein release of IL-1β, IL-23, and TNF-α were evaluated by real-time PCR and ELISA methods respectively before and after treatment. BzATP significantly increased the protein release of TNF-α and the expression of TNFA and IL1B in monocyte-generated macrophages. Besides, BzATP treatment significantly upregulated IL1B expression, reduced TNFA and IL23A expression, and TNF-α release in M1 macrophages from both groups. Monocyte-generated and M1 macrophages from AS patients released higher TNF-α and expressed more IL1B in response to the same concentration of BzATP treatment respectively. Based on our results, AS macrophages were more sensitive to BzATP treatment and responded more intensively. Besides, the diverse effects of BzATP on monocyte-derived and M1 macrophages in our study may represent the differed inflammatory properties of these two groups of macrophages in response to eATP in the body.

2008 ◽  
Vol 294 (3) ◽  
pp. G770-G777 ◽  
Author(s):  
Jean-Eric Ghia ◽  
Francesca Galeazzi ◽  
David C. Ford ◽  
Cory M. Hogaboam ◽  
Bruce A. Vallance ◽  
...  

Although macrophages are considered a critical factor in determining the severity of acute inflammatory responses in the gut, recent evidence has indicated that macrophages may also play a counterinflammatory role. In this study, we examined the role of a macrophage subset in two models of colitis. Macrophage colony-stimulating factor (M-CSF)-deficient osteopetrotic mice (op/op) and M-CSF-expressing heterozygote (+/?) mice were studied following the induction of colitis by either dinitrobenzene sulfonic acid (DNBS) or dextran sulfate sodium (DSS). DNBS induced a severe colitis in M-CSF-deficient op/op mice compared with +/? mice. This was associated with increased mortality and more severe macroscopic and microscopic injury. Colonic tissue myeloperoxidase (MPO) activity as well as concentrations of TNF-α, IL-1β, and IL-6 were higher and IL-10 lower in op/op mice with DNBS colitis. The severity of inflammation and mortality was attenuated in op/op mice that had received human recombinant M-CSF prior to the induction of colitis. In contrast, op/op mice appeared less vulnerable to colitis induced by DSS. Macroscopic damage, microscopic injury, MPO activity, and tissue concentrations of TNF-α, IL-1β, and IL-6 were all lower in op/op mice compared with +/? mice with DSS colitis, and no changes were seen in IL-10. Macrophage inflammatory protein-1α concentrations were increased in op/op but not +/? mice following colitis induced by DNBS but not DSS. These results indicate that M-CSF-dependent macrophages may play either a pro- or counterinflammatory role in acute experimental colitis, depending on the stimulus used to induce colitis.


Author(s):  
Arezou Lari ◽  
Hamid Gholami Pourbadie ◽  
Mohieddin Jafari ◽  
Ali Sharifi-Zarchi ◽  
Maryam Akhtari ◽  
...  

<b><i>Objectives:</i></b> Ankylosing spondylitis (AS) is a rheumatic disorder that is mostly determined by genetic and environmental factors. Given the known importance of macrophage in AS pathogenesis, we investigated the transcriptional profile of macrophage cells in the disease. <b><i>Methods and Results:</i></b> Two approaches of differential expression and subsequently, weighted gene co-expression network analysis was utilized to analyze a publicly available microarray dataset of macrophages. Integral membrane protein 2A (<i>ITM2A</i>) was among the most significant genes with a decreased trend in the common results of both methods. In order to confirm the finding, the expression of <i>ITM2A</i> was evaluated in monocyte-derived (M2-like) and M1 macrophages obtained from 14 AS patients and 14 controls. Macrophages were differentiated from whole-blood separated monocytes by 7 days incubating with macrophage colony-stimulating factor and then macrophages specific markers were verified with the flow cytometer. M1 polarization was induced by IFN-γ and lipopolysaccharide. Finally, relative gene expression analysis by real-time polymerase chain reaction revealed a significant downregulation of the <i>ITM2A</i> gene in both M2 like and M1 macrophages of the AS group compared to the control. <b><i>Conclusion:</i></b> Since <i>ITM2A</i> plays a critical role in osteo- and chondrogenic cellular differentiation, our finding may provide new insights into AS pathogenesis.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2794 ◽  
Author(s):  
Cao ◽  
Chen ◽  
Ren ◽  
Zhang ◽  
Tan ◽  
...  

Punicalagin, a hydrolysable tannin of pomegranate juice, exhibits multiple biological effects, including inhibiting production of pro-inflammatory cytokines in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In this study, we investigated the anti-inflammatory potential of punicalagin in lipopolysaccharide (LPS) induced RAW264.7 macrophages and uncovered the underlying mechanisms. Punicalagin significantly attenuated, in a concentration-dependent manner, LPS-induced release of NO and decreased pro-inflammatory cytokines TNF-α and IL-6 release at the highest concentration. We found that punicalagin inhibited NF-κB and MAPK activation in LPS-induced RAW264.7 macrophages. Western blot analysis revealed that punicalagin pre-treatment enhanced LC3II, p62 expression, and decreased Beclin1 expression in LPS-induced macrophages. MDC assays were used to determine the autophagic process and the results worked in concert with Western blot analysis. In addition, our observations indicated that LPS-induced releases of NO, TNF-α, and IL-6 were attenuated by treatment with autophagy inhibitor chloroquine, suggesting that autophagy inhibition participated in anti-inflammatory effect. We also found that punicalagin downregulated FoxO3a expression, resulting in autophagy inhibition. Overall these results suggested that punicalagin played an important role in the attenuation of LPS-induced inflammatory responses in RAW264.7 macrophages and that the mechanisms involved downregulation of the FoxO3a/autophagy signaling pathway.


2001 ◽  
Vol 69 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Julie Riopel ◽  
MiFong Tam ◽  
Karkada Mohan ◽  
Michael W. Marino ◽  
Mary M. Stevenson

ABSTRACT The contribution of granulocyte-macrophage colony-stimulating factor (GM-CSF), a hematopoietic and immunoregulatory cytokine, to resistance to blood-stage malaria was investigated by infecting GM-CSF-deficient (knockout [KO]) mice with Plasmodium chabaudi AS. KO mice were more susceptible to infection than wild-type (WT) mice, as evidenced by higher peak parasitemia, recurrent recrudescent parasitemia, and high mortality. P. chabaudiAS-infected KO mice had impaired splenomegaly and lower leukocytosis but equivalent levels of anemia compared to infected WT mice. Both bone marrow and splenic erythropoiesis were normal in infected KO mice. However, granulocyte-macrophage colony formation was significantly decreased in these tissues of uninfected and infected KO mice, and the numbers of macrophages in the spleen and peritoneal cavity were significantly lower than in infected WT mice. Serum levels of gamma interferon (IFN-γ) were found to be significantly higher in uninfected KO mice, and the level of this cytokine was not increased during infection. In contrast, IFN-γ levels were significantly above normal levels in infected WT mice. During infection, tumor necrosis factor alpha (TNF-α) levels were significantly increased in KO mice and were significantly higher than TNF-α levels in infected WT mice. Our results indicate that GM-CSF contributes to resistance to P. chabaudi AS infection and that it is involved in the development of splenomegaly, leukocytosis, and granulocyte-macrophage hematopoiesis. GM-CSF may also regulate IFN-γ and TNF-α production and activity in response to infection. The abnormal responses seen in infected KO mice may be due to the lack of GM-CSF during development, to the lack of GM-CSF in the infected mature mice, or to both.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Hector A Cabrera-Fuentes ◽  
Klaus T Preissner ◽  
William A Boisvert

As an important component of atherosclerosis, monocytes/macrophages respond to external stimuli with rapid changes in their expression of many inflammation-related genes to undergo polarization towards the M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotype. Although sialoadhesin (Sn), also known as SIGLEC-1 or CD169, is a transmembrane protein receptor expressed on monocytes and macrophages whether it has a role in macrophage polarization and ultimately, macrophage-driven atherogenesis, has not been investigated. We have previously shown that, independently of Toll-like receptor signaling, extracellular RNA (eRNA) could exert pro-thrombotic and pro-inflammatory properties in the cardiovascular system by inducing cytokine mobilization. In the current study, recombinant mouse macrophage CSF[[Unable to Display Character: &#8211;]]driven bone marrow-derived macrophage (BMDM) differentiation was found to be skewed towards the M1 phenotype by exposure of cells to eRNA. This resulted in up-regulation of inflammatory markers, whereas anti-inflammatory genes were significantly down-regulated by eRNA. Interestingly, eRNA was released from BMDM under hypoxia and induced TNF-α liberation by activating TNF-α converting enzyme (TACE) to provoke inflammation. Conversely, TNF-α promoted eRNA release, especially under hypoxia, feeding a vicious cycle of cell damage. Administration of RNase1 or TAPI (a TACE-inhibitor) prevented the production of inflammatory mediators. Murine BMDM isolated from mice deficient in sialoadhesin had the opposite reaction to eRNA treatment with a prominent down-regulation of pro-inflammatory cytokines/M1 phenotype markers, while anti-inflammatory cytokines/M2 phenotype markers were significantly raised. In keeping with the proposed role of eRNA as a pro-inflammatory “alarm signal”, these data further shed light on the role of eRNA in macrophage function in the context of chronic inflammatory diseases such as atherosclerosis. The identification of sialoadhesin as putative eRNA recognition site on macrophages may allow further investigation of the underlying mechanisms of eRNA-macrophage interaction and related signal transduction pathways. Siglec-1 thereby may provides a new target to treat eRNA-mediated vascular diseases.


2003 ◽  
Vol 284 (5) ◽  
pp. L882-L890 ◽  
Author(s):  
Hiroki Numanami ◽  
Sekiya Koyama ◽  
Esturo Sato ◽  
Masayuki Haniuda ◽  
Dan K. Nelson ◽  
...  

Chemotactic chemokines can be released from lung fibroblasts in response to interleukin (IL)-1β and tumor necrosis factor (TNF)-α. An imbalance between proteases and antiproteases has been observed at inflammatory sites, and, therefore, protease inhibitors might modulate fibroblast release of chemotactic cytokines. To test this hypothesis, serine protease inhibitors (FK-706, α1-antitrypsin, or Nα- p-tosyl-l-lysine chloromethyl ketone) were evaluated for their capacity to attenuate the release of neutrophil chemotactic activity (NCA) or monocyte chemotactic activity (MCA) from human fetal lung fibroblasts (HFL-1). Similarly, the release of the chemoattractants IL-8, granulocyte colony-stimulating factor, monocyte chemoattractant protein-1, macrophage colony-stimulating factor, and granulocyte/macrophage colony-stimulating factor, from HFL-1, were evaluated in response to IL-1β and TNF-α. NCA, MCA, and chemotactic cytokines were attenuated by FK-706. However, matrix metalloproteinase inhibitors were without effect, and cysteine protease inhibitors only slightly attenuated chemotactic or cytokine release. These data suggest that IL-1β and TNF-α may stimulate lung fibroblasts to release NCA and MCA by a protease-dependent mechanism and that serine protease inhibitors may attenuate the release.


2020 ◽  
Vol 21 (2) ◽  
pp. 413
Author(s):  
Jihae Park ◽  
Jee Taek Kim ◽  
Soo Jin Lee ◽  
Jae Chan Kim

Angiogenin (ANG) is involved in the innate immune system and inflammatory disease. The aim of this study is to evaluate the anti-inflammatory effects of ANG in an endotoxin induced uveitis (EIU) rat model and the pathways involved. EIU rats were treated with balanced salt solution (BSS), a non-functional mutant ANG (mANG), or wild-type ANG (ANG). The integrity of the blood-aqueous barrier was evaluated by the infiltrating cell and protein concentrations in aqueous humor. Histopathology, Western blot, and real-time qRT-PCR of aqueous humor and ocular tissue were performed to analyze inflammatory cytokines and transcription factors. EIU treated with ANG had decreased inflammatory cells and protein concentrations in the anterior chamber. Compared to BSS and mANG, ANG treatment showed reduced expression of IL-1β, IL-8, TNF-α, and Myd88, while the expression of IL-4 and IL-10 was increased. Western blot of ANG treatment showed decreased expression of IL-6, inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, and phosphorylated NF-κB and increased expression of IL-10. In conclusion, ANG seems to reduce effectively immune mediated inflammation in the EIU rat model by reducing the expression of proinflammatory cytokines, while increasing the expression of anti-inflammatory cytokines through pathways related to NF-κB. Therefore, ANG shows potential for effectively suppressing immune-inflammatory responses in vivo.


2010 ◽  
Vol 104 (5) ◽  
pp. 724-728 ◽  
Author(s):  
Fatemeh Arya ◽  
Sam Egger ◽  
David Colquhoun ◽  
David Sullivan ◽  
Sebely Pal ◽  
...  

A low-grade inflammatory response (‘metaflammation’) has been found to be associated with certain chronic diseases. Proposed inducers of this have been aspects of the modern lifestyle, including newly introduced foods. Plasma TAG, and the inflammatory cytokines C-reactive protein (CRP), TNF-α and IL-6 were compared in a randomised, cross-over trial using ten healthy subjects before and after eating 100 g of kangaroo, or a ‘new’ form of hybridised beef (wagyu) separated by about 1 week. Postprandial levels for 1 and 2 h of TAG, IL-6 and TNF-α were significantly higher after eating wagyu compared with kangaroo (P = 0·002 for TAG at 1 h, P < 0·001 at 2 h; P < 0·001 for IL-6 and TNF-α at 1 and 2 h). CRP was significantly higher 1 h postprandially after wagyu (P = 0·011) and non-significantly higher 2 h postprandially (P = 0·090). We conclude that the metaflammatory reaction to ingestion of a ‘new’ form of hybridised beef (wagyu) is indicative of a low-grade, systemic, immune reaction when compared with lean game meat (kangaroo). Further studies using isoenergetic intake and isolating fatty acid components of meats are proposed.


Sign in / Sign up

Export Citation Format

Share Document