scholarly journals Properties of poly (vinyl chloride) membranes containing cadmium pigments, irradiated with UV radiation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Magdalena Tworek ◽  
Łukasz Skowroński ◽  
Edwin Makarewicz ◽  
Joanna Kowalik

AbstractThe cadmium pigments were yellow, orange and red pigments. They consisted of cadmium sulphide and cadmium sulphide with zinc sulphide as well as cadmium sulphide with cadmium selenide. Their quantitative composition and specific surface area were examined. The pigments were used to color the poly (vinyl chloride) plastisol films, which were then exposed to UV radiation. The surfaces of the coloured membranes were examined by infrared spectroscopy before and after irradiation with UV. The changes occurred in the PVC membrane were investigated by thermogravimetric analysis. The degree of crystallinity of the pigments and the membrane was determined by X-ray diffraction. The color change of the membranes was determined from the spectra obtained by reflection spectroscopy, and the components of colour L*, a* and b* were calculated. Base of them, the tolerance of colour deviations (ΔE*) was determined. The calculations allowed for the determination of the effect of UV irradiation on the change of the colour of the membranes and confirmation of the degradation of the pigments and polymer membrane.

2020 ◽  
Vol 40 (10) ◽  
pp. 842-847
Author(s):  
Shankar Suman ◽  
Ram Singh

AbstractA new poly (vinyl chloride) (PVC) membrane electrode using 2-benzoylpyridine semicarbazone as membrane carrier with dioctylphthalate as plasticizer and sodium tetraphenylborate (NaTBP) as anion excluder has been fabricated and investigated as Zn(II)-selective electrode. Best potential response is observed for the composition PVC 30%, plasticizer 58%, NaTBP 8% and ionophore 4% (w/w). The sensor showed a linear stable response over a concentration range of 1.0 × 10−2–4.56 × 10−6 M with a detection limit of 2.28 × 10−6 M and a response time <10 s. The electrode can be used for at least six months without any divergence in potential.


2018 ◽  
Vol 83 (10) ◽  
pp. 1157-1165
Author(s):  
Ivana Kostic ◽  
Tatjana Andjelkovic ◽  
Darko Andjelkovic ◽  
Tatjana Cvetkovic ◽  
Dusica Pavlovic

The influence of ultraviolet (UV) radiation on the leaching of di(2- -ethylhexyl) phthalate (DEHP) from 8 different parts of plastic medical devices made of poly(vinyl chloride) (PVC) that are used in two important medical procedures (peritoneal dialysis and transfusion) was investigated. The investigation was performed for three different extraction times (6, 15 and 30 days). DEHP determination was realized by gas chromatography?mass spectrometry (GC-EI? ?MS). All the investigated samples contained a significant amount of DEHP. The results showed that some of the set for peritoneal dialysis contained DEHP in higher amounts than samples from the transfusion set. All samples of tubing material showed higher concentration levels of DEHP than the coupled bags. Results obtained after UV treatment showed that UV radiation has a certain influence on DEHP leaching from samples of PVC medical devices. The smallest difference was in the case of the quadruple blood bag from the transfusion set (about 73 % remained), while the biggest difference was obtained for the SAG-M transfer bag, also from the transfusion set, where just 25 % of total content of DEHP remained. The results obtained for DEHP leaching from investigated samples by time showed that most of the samples showed significant differences in the amounts of DEHP leached after 6 and 30 days.


2018 ◽  
Vol 44 ◽  
pp. 00122 ◽  
Author(s):  
Ewelina Niedzielska ◽  
Anna Masek

The aim of this work was carry out accelarated process of ageing for cyclic olefin copolymer ethylene – norbornene (Topas). The Topas cyclic olefin copolymer (COC) family characterize high transparency, excellent mechanical properties and low water permeability. The influence of external factors such as UV radiation, elevated temperature, oxygen effect and humidity causing degradation of polymer macroparticles was also investigated. The properties of the polymer before and after weathering and UV radiation were also compared. Degradability was examinated by measuring color change, FTIR spectrum analysis and determination of the ageing factor k. The tensile strength, elongation at break and hardness of composites by Shore A method were measured. The synergistic effect of temperature, humidity and UV radiation reduces the mechanical properties of the samples tested, while the interaction of only UV radiation on the samples causes a significant change color.


2022 ◽  
Vol 16 (1) ◽  
pp. 23
Author(s):  
Hassan Ghani ◽  
Emad Yousif ◽  
Mohammed Kadhom ◽  
Waled Abdo Ahmed ◽  
Muhammad Rahimi Yusop ◽  
...  

The photostabilization of poly (vinyl chloride) (PVC) film filled with an organotin complex in its structure was examined and compared with the blank PVC film. The organotin (IV) complex that contains 4-(benzylideneamino) benzenesulfonamide as a ligand was synthesized and applied as a PVC photostabilizer. The impact of the complex on the polymer was assessed by comparing the properties of the films with and without the complex, before and after irradiation, using Fourier transform infrared spectroscopy, weight loss, viscosity change, atomic force microscopy, and field emission scanning electron microscopy (FE-SEM). Results showed that the complex film had lower weight loss, gel content, and molecular weight deterioration than the plain PVC film. Also, surfaces of the complexes-filled films were smoother, less lumpy, and more homogeneous. These findings were obtained via the FE-SEM and light microscope images and confirmed by measuring the roughness factor. The organotin (IV) complex proved its activity in delaying the photo-degradation of PVC by several mechanisms. Ultimately, the Tin complex has effectively protected the PVC film against irradiation. The photostabilization of poly (vinyl chloride) (PVC) film filled with an organotin complex in its structure was examined and compared with the blank PVC film. The organotin (IV) complex that contains 4-(benzylideneamino) benzenesulfonamide as a ligand was synthesized and applied as a PVC photostabilizer. The impact of the complex on the polymer was assessed by comparing the properties of the films with and without the complex, before and after irradiation, using Fourier transform infrared spectroscopy, weight loss, viscosity change, atomic force microscopy, and field emission scanning electron microscopy (FE-SEM). Results showed that the complex film had lower weight loss, gel content, and molecular weight deterioration than the plain PVC film. Also, surfaces of the complexes-filled films were smoother, less lumpy, and more homogeneous. These findings were obtained via the FE-SEM and light microscope images and confirmed by measuring the roughness factor. The organotin (IV) complex proved its activity in delaying the photo-degradation of PVC by several mechanisms. Ultimately, the Tin complex has effectively protected the PVC film against irradiation.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5655
Author(s):  
Ruru Wan ◽  
Xiaoli Sun ◽  
Zhongjie Ren ◽  
Huihui Li ◽  
Shouke Yan

The blends of high and low molecular weights poly(ε-caprolactone) (PCL) with poly(vinyl chloride (PVC) were prepared. The samples before and after the crystallization of PCL were uniaxially stretched to different draw ratios. The orientation features of PCL in a stretched crystalline PCL/PVC blend and crystallized from the amorphous PCL/PVC blends under varied strains were studied by wide-angle X-ray diffraction (WAXD). It was found that a uniaxial stretching of crystalline PCL/PVC blend with high molecular weight PCL results in the c-axis orientation along the stretching direction, as is usually done for the PCL bulk sample. For the stretched amorphous PCL/PVC blend samples, the crystallization of high molecular weight PCL in the blends under a draw ratio of λ = 3 with a strain rate of 6 mm/min leads to a ring-fiber orientation. In the samples with draw ratios of λ = 4 and 5, the uniaxial orientation of a-, b-, and c-axes along the strain direction coexist after crystallization of high molecular weight PCL. With a draw ratio of λ = 6, mainly the b-axis orientation of high molecular weight PCL is identified. For the low molecular weight PCL, on the contrary, the ring-fiber and a-axis orientations coexist under a draw ratio of λ = 3. The a-axis orientation decreases with the increase of draw ratio. When the λ reaches 5, only a poorly oriented ring-fiber pattern has been recognized. These results are different from the similar samples stretched at a higher strain rate as reported in the literatures and demonstrate the important role of strain rate on the crystallization behavior of PCL in its blend with PVC under strain.


2012 ◽  
Vol 549 ◽  
pp. 221-224
Author(s):  
Gang Xu ◽  
Wen Li Dong ◽  
Ling Yan Ren

A new highly selective poly vinyl chloride(PVC) membrane iodide electrode which has neutral carrier of cobalt(Ⅱ) complex with symmetrical binuclear schiff base has been studied. Based on the fact we knew that ethylenediamine could react to acetylacetone and salicylaldehyde. The electrode exhibited near -Nernst response to iodide with a slope of ―54.4 mV/dec over a wide concentration range (1.58×10-7~1.0×10-1 mol/L) with a detection limit of 6.3×10-8 mol/L in phosphorate bufer solution with pH=2.4 at 26°C. After applied to the determination of iodide in pharmaceuticals and salts, the electrode could get satisfied results


Surfaces ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 579-593
Author(s):  
Baraa Watheq ◽  
Emad Yousif ◽  
Mohammed H. Al-Mashhadani ◽  
Alaa Mohammed ◽  
Dina S. Ahmed ◽  
...  

In this work, three Ibuprofen tin complexes were synthesized and characterized by Fourier Transform Infrared spectroscopy (FTIR), 1H and 119Sn-Nuclear Magnetic Resonance (NMR), and Energy Dispersive X-ray (EDX) spectroscopies to identify the structures. The complexes were mixed separately with poly(vinyl chloride) (PVC) to improve its photo-stability properties. Their activity was demonstrated by several approaches of the FTIR to exhibit the formation of new groups within the polymer structure due to the exposure to UV light. Moreover, the polymer’s weight loss during irradiation and the average molecular weight estimation using its viscosity before and after irradiation were investigated. Furthermore, different techniques were used to study the surface morphology of the PVC before and after irradiation. Field-emission scanning electron microscopy (FESEM) and optical microscope demonstrated that applying Ibuprofen tin complexes keeps the surface of PVC smoother, with fewer cracks and spots after irradiation comparing to the blank PVC. Finally, It seems possible that such synthesized Ibuprofen tin complexes can work as excellent photo-stabilizers of PVC. In particular, complex 1 showed the best results among other stabilizers due to the large conjugation system of the stabilizer.


Surfaces ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 279-292
Author(s):  
Alaa Mohammed ◽  
Mohammed Kadhom ◽  
Emad Yousif

Dimethyl-organotin(IV) valsartan (Me2SnL2) and dichlorostannanediyl valsartan (SnL2Cl2) complexes were synthesized, characterized, and applied as Poly(vinyl chloride) (PVC) photo-stabilizers. The complexes were loaded within the PVC films in a weight ratio of 0.5%, and the modified films were irradiated to a UV light of 313 nm wavelength for 300 h at room temperature. The efficiency of the complexes-filled films was compared with the plain one and evaluated before and after irradiation by Fourier transform infrared spectroscopy, weight loss, gel content, change in viscosity, atomic force microscopy, and field emission scanning electron microscopy. The SnL2Cl2 complex had higher activity than the Me2SnL2 complex to retard the PVC’s photodegradation by several mechanisms.


Sign in / Sign up

Export Citation Format

Share Document