scholarly journals Berkchaetoazaphilone B has antimicrobial activity and affects energy metabolism

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xudong Ouyang ◽  
Jelmer Hoeksma ◽  
Gisela van der Velden ◽  
Wouter A. G. Beenker ◽  
Maria H. van Triest ◽  
...  

AbstractAntimicrobial resistance has become one of the major threats to human health. Therefore, there is a strong need for novel antimicrobials with new mechanisms of action. The kingdom of fungi is an excellent source of antimicrobials for this purpose because it encompasses countless fungal species that harbor unusual metabolic pathways. Previously, we have established a library of secondary metabolites from 10,207 strains of fungi. Here, we screened for antimicrobial activity of the library against seven pathogenic bacterial strains and investigated the identity of the active compounds using ethyl acetate extraction, activity-directed purification using HPLC fractionation and chemical analyses. We initially found 280 antimicrobial strains and subsequently identified 17 structurally distinct compounds from 26 strains upon further analysis. All but one of these compounds, berkchaetoazaphilone B (BAB), were known to have antimicrobial activity. Here, we studied the antimicrobial properties of BAB, and found that BAB affected energy metabolism in both prokaryotic and eukaryotic cells. We conclude that fungi are a rich source of chemically diverse secondary metabolites with antimicrobial activity.

2011 ◽  
Vol 65 (1) ◽  
Author(s):  
Carmen Limban ◽  
Alexandru Missir ◽  
Ileana Chirita ◽  
George Nitulescu ◽  
Miron Caproiu ◽  
...  

AbstractNew acylthiourea derivatives, 2-((4-ethylphenoxy)methyl)-N-(phenylcarbamothioyl)benzamides, were tested by qualitative and quantitative methods on various bacterial and fungal strains and proved to be active at low concentrations against Gram-positive and Gram-negative bacteria as well as fungi. These compounds were prepared by the reaction of 2-((4-ethylphenoxy)methyl)benzoyl isothiocyanate with various primary aromatic amines, and were characterised by melting point and solubility. The structures were identified by elemental analysis, 1H and 13C NMR, and IR spectral data. The level of antimicrobial activity of the new 2-((4-ethylphenoxy)methyl)benzoylthiourea derivatives was dependent on the type, number and position of the substituent on the phenyl group attached to thiourea nitrogen. The iodine and nitro substituents favoured the antimicrobial activity against the Gram-negative bacterial strains, while the highest inhibitory effect against Gram-positive and fungal strains was exhibited by compounds with electron-donating substituents such as the methyl and ethyl groups.


Author(s):  
Haïfa Debbabi ◽  
Ridha El Mokni ◽  
Ibrahim Jlassi ◽  
Rajesh K Joshi ◽  
Saoussen Hammami

Abstract Chemical composition and antimicrobial activity of Teucrium capitatum L. subsp. lusitanicum essential oil was investigated for the first time in the present study. Qualitative and quantitative analyses of the chemical composition by gas chromatography and mass spectrometry (GC–FID and GC–MS) revealed the presence of 60 compounds representing 97.6% of the whole constituents. The main compounds were germacrene D (47.1%), spathulenol (5.8%), α-selinene (5.3%), germacrene A (2.9%), δ-cadinene (2.8%) and cubenol (2.7%). In vitro, the antimicrobial activity was investigated against five bacterial strains along with the yeast Candida albicans using broth microdilution assay. T. capitatum subsp. lusitanicum essential oil showed significant activity against the gram-positive bacteria Staphylococcus aureus (MIC = MBC = 78 μg mL−1), Bacillus subtilis (MIC = MBC = 156 μg mL−1) and the yeast C. albicans (MIC = MFC = 156 μg mL−1). The great potential of antimicrobial effects is most likely due to the very high percentage of sesquiterpene hydrocarbons particularly to germacrene D, for which the antimicrobial properties have been previously reported.


2016 ◽  
Vol 53 ◽  
pp. 57-64
Author(s):  
Radia Mahboub ◽  
Faiza Memmou

We have studied the antimicrobial properties of 6-bromoeugenol and eugenol by three strains:Pseudomonas aeruginosa(S1),Escherichia coli(S2) andStaphylococcus aureus(S3). We have determined the minimum inhibitory concentration (MIC) for a range of concentrations using the disc diffusion method. We note that all samples present an antimicrobial activity toward the tested bacterial strains at different concentrations (1, 0.5 and 0.25 mg/ml). The 6-bromoeugenol gives modest activity with (S1) and (S3). Eugenol reacts positively with thePseudomonas aeruginosa(S1) at all concentrations and with theEscherichiacoli(S2) at 0.5 mg/ml. We remark that thePseudomonas aeruginosa(S1) is the more sensitive strain thanEscherichiacoli(S2) andStaphylococcus aureus(S3). We have estimated the activity coefficient which has confirmed the antimicrobial activity of the different samples. So, 6-bromoeugenol has shown his efficiency as antimicrobial agent.


Author(s):  
MOUSHUMI BAIDYA ◽  
ANBU J. ◽  
SEMIMUL AKHTAR ◽  
SIPRA SARKAR ◽  
SUDIP KUMAR MANDAL

Objective: The study was undertaken to evaluate the antimicrobial activity of ethanolic extract of polyherbal seed shells. Methods: The seed of Momordica charantia, Manikara zapota, Emblica officinalis, Syzygium cumini, collected from the local market, Mathikere, Bangalore, India. Ethanolic extract was prepared from the dried seed powders using solvent 80% ethanol. Initially, antimicrobial activity of the extract was performed by agar well diffusion method against two bacterial strains (Escherichia coli, and Staphylococcus aureus) and two fungal pathogens (Aspergillus niger and Candida albicans). Results: The antimicrobial study results revealed that the test extract was strongly inhibited the growth of bacteria, whereas it was not inhibited the growth of fungal organisms used in this study. Conclusion: The results suggest that ethanolic extract of seeds possess antimicrobial properties which can be used for the treatment of infectious diseases.


Thrita ◽  
2020 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Mohammad Taghi Taghipour ◽  
Reihaneh Nameni ◽  
Mehrad Taghipour ◽  
Fereshteh Ghorat

Background: The increased use of antibiotics has led to the frequent occurrence of resistant bacterial strains᾽ infections and increased side effects. It is inevitable that medicinal plants and their good antimicrobial activities for controlling and curing different infectious diseases is always a salient feature of various investigations. Also, understanding the plant species in the light of the Holy Quran, religious texts, and the sacred books could make a useful contribution to studying two significant plants used as ancient and reliable medicines. Objectives: The present research used two plants for medicinal products to evaluate their antimicrobial activity. Ziziphus spina-christi (sider) is a medicinal and traditional plant and ethanol and methanol extracts of its leaves have been used against some bacterial and viral infections. Another herbal remedy is Tamarix aphylla with the local name of Ghaz, as the largest known species of Tamarix. The stem smoke of Tamarix aphylla is used by people in the desert area as an antibiotic and antimicrobial agent. Methods: The leaves of Ziziphus spina-christi and Tamarix aphylla were collected to extract their flavonoids and alkaloids using methanol and ethanol, respectively. Moreover, in the process of extraction, powdered and dried leaves by using disc diffusion testing and undiluted neat solution were prepared. Results: The extracted phytochemicals exhibited antimicrobial activity of the two plants through alkaloids and flavonoids as secondary metabolites. Substantial influences on impairing the energy metabolism weakened microbial growth, resulting in the fat formation and protein inhibition. Conclusions: It was concluded that flavonoids and alkaloids from Ziziphus spina-christi and Tamarix aphylla leaves have antimicrobial potential. On the other hand, the process of cell division can be affected by alkaloids that are bound to DNA. Also, flavonoids bind to DNA and RNA, resulting in impairing energy metabolism causing the weakened growth of the microbe affecting protein inhibition and fat formation. Viral cell walls are made up of proteins. Coronavirus spike proteins and viral membrane fusions are wonderful molecules. Through binding to the host cell surface receptor, coronaviruses enter host cells and then fuse the host and viral membranes. Through precipitating the protein components, tannins in Ziziphus spina-christi behave as detoxifying agents by inhibiting their growth.


2021 ◽  
Vol 32 (1) ◽  
pp. 6-21
Author(s):  
Jannatul Maowa ◽  
Asraful Alam ◽  
Kazi M. Rana ◽  
Sujan Dey ◽  
Anowar Hosen ◽  
...  

Abstract Nucleosides and their analogues are an important, well-established class of clinically useful medicinal agents that exhibit antiviral and anticancer activity. Thus, our research group has focused on the synthesis of new nucleoside derivatives that could be tested for their broad-spectrum biological activity. In this study, two new series of nucleoside derivatives were synthesized from uridine (1) through facile two-step reactions using the direct acylation method, affording 5’-O-acyl uridine derivatives in good yields. The isolated uridine analogs were further transformed into two series of 2’,3’-di-O-acyl derivatives bearing a wide variety of functionalities in a single molecular framework to evaluate their antimicrobial activity. The new synthesized compounds were characterized through physicochemical, elemental and spectroscopic analysis, and all were screened for their in vitro antimicrobial activity against selected human and plant pathogenic strains. The test compounds revealed moderate to good antibacterial and antifungal activities and were more effective against fungal phytopathogens than against bacterial strains, while many of them exhibited better antimicrobial activity than standard antibiotics. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests against all microorganisms were also conducted for five compounds based on their activity (6, 11, 13, 16, and 17). In addition, all the derivatives were optimized using density functional theory (DFT) B3LYP/6-31g+(d,p) calculations to elucidate their thermal and molecular orbital properties. A molecular docking study was performed using the human protein 5WS1 to predict their binding affinity and modes, and ADMET and SwissADME calculations confirmed the improved pharmacokinetic properties of the compounds. Besides, structure–activity relationship (SAR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) studies were also performed. Thus, the improvement of the bioactivity of these compounds is expected to significantly contribute to the design of more antimicrobial agents for therapeutic use in the future.


Author(s):  
Adriana URCAN ◽  
Adriana CRISTE ◽  
Daniel DEZMIREAN ◽  
Otilia BOBIȘ ◽  
Liviu MĂRGHITAȘ ◽  
...  

Bee bread is a product of the hive obtained from pollen collected by bees, to which they add honey, digestive enzymes and subsequently is stored in the combs. Increasing evidence suggests bee bread’s potential therapeutic benefits, including antimicrobial properties. Bee bread is characterized by a bactericidal and bacteriostatic activity. The current study was carried out to test the antimicrobial activity of bee bread extracts, in various concentrations, against the bacterial strains: Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enterica and Pseudomonas aeruginosa. The results of this study indicate that the first two dilutions of bee bread extract, respectively 33% and 16.66%, showed higher antimicrobial activity and the other dilutions had a lower, but visible activity depending on the pathogen on which they are tested. The best antimicrobial activity was manifested on the Staphylococcus aureus strain, where all dilutions had an inhibitory effect both at 8 hours and 12 hours.


2019 ◽  
Vol 13 (2) ◽  
pp. 120-128
Author(s):  
Amal Thebti ◽  
Ines Chniti ◽  
Med Abderrahmane Sanhoury ◽  
Ikram Chehidi ◽  
Hadda Imene Ouzari ◽  
...  

Background:The widespread occurrence of resistance to current antibiotics has triggered increasing research efforts to design and develop innovative antibacterial and antifungal agents that could overcome such antimicrobial resistance.Objective:The aim of this work was the in vitro evaluation of twelve highly fluorinated Nmonosubstituted thiocarbamates and dithiocarbamates and six non-fluorinated analogs against nine bacterial strains and three fungal species.Methods:The in vitro antimicrobial activity against the tested microrganisms was evaluated using the microdilution broth method.Results:Escherichia coli ATCC 8739, Salmonella sp., Staphylococcus aureus 6539 and all the three fungi (Aspergillus niger, Aspergillus flavus and Penicillium expansum) exhibited the highest rate of susceptibility, whilst Enterococcus faecuim ATCC 19436 and particularly Escherichia coli DH5α were less susceptible. Thiocarbamate (1i) and dithiocarbamate (2i) showed both the lowest MIC values (3.9 µg/mL) and the widest spectrum of antibacterial activity. Furthermore, the N-ethyl derivatives inhibited more efficiently the growth of bacteria than N-aryl analogs.Conclusion:The fluorinated compounds showed, in general, a relatively more potent antibacterial activity than non-fluorinated counterparts. The results indicate that these thiocarbamates and dithiocarbamates could be promising candidates as potential antimicrobial agents.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1198 ◽  
Author(s):  
Szymon Mania ◽  
Mateusz Cieślik ◽  
Marcin Konzorski ◽  
Paweł Święcikowski ◽  
Andrzej Nelson ◽  
...  

Zinc compounds in polyolefin films regulate the transmission of UV-VIS radiation, affect mechanical properties and antimicrobial activity. According to hypothesis, the use of zinc- containing masterbatches in polyethylene films (PE) with different chemical nature—hydrophilic zinc oxide (ZO) and hydrophobic zinc stearate (ZS)—can cause a synergistic effect, especially due to their antimicrobial properties. PE films obtained on an industrial scale containing zinc oxide and zinc stearate masterbatches were evaluated for antimicrobial activity against E. coli and S. aureus strains. The morphology of the samples (SEM), composition (EDX), UV barrier and transparency, mechanical properties and global migration level were also determined. SEM micrographs confirmed the good dispersion of zinc additives in the PE matrix. The use of both masterbatches in one material caused a synergistic effect of antimicrobial activity against both bacterial strains. The ZO masterbatch reduced the transparency of films, increased their UV-barrier ability and improved tensile strength, while the ZS masterbatch did not significantly change the tested parameters. The global migration limit was not exceeded for any of the samples. The use of ZO and ZS masterbatch mixtures enables the design of packaging with high microbiological protection with a controlled transmission for UV and VIS radiation.


Proceedings ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 18
Author(s):  
Jessica Ribeiro ◽  
Vanessa Silva ◽  
Alfredo Aires ◽  
Rosa Carvalho ◽  
Gilberto Igrejas ◽  
...  

Multidrug-resistant bacteria are a significant threat to public health and new classes of antibiotics and approaches to treatment are needed. Several studies have shown that natural plant-derived compounds could be a promising mean to fight microbial resistance but only a few were conducted with antibiotic resistant bacteria. Therefore, the aim of this study was to extract phenolic compounds from the leaves, fruits, and tree trunk of Platanus hybrida and evaluate their antimicrobial activity against antibiotic resistant bacterial strains. The polyphenolic compounds were extracted using a water/ethanol (20:80) mixture. Two grams of powder of each sample was extracted with 100 mL of solvent by stirring for 2h. The extracts were redissolved in dimethyl sulfoxide (DMSO) to a final concentration of 100 mg/mL. An antimicrobial susceptibility assay was performed using the Kirby–Bauer disc diffusion method and was tested against ten different bacteria: Listeria monocytes, Bacillus cereus, Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella enteritidis, Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli. The fruits had the highest antibacterial activity showing a minimum inhibitory concentration (MIC) of 10mg/mL, contrary to the tree trunk that showed the lowest antibacterial activity. None of the extracts showed antimicrobial properties against S. enteritidis, E. faecium and E. faecalis. These results show that P. hybrida’s phenolic compounds act as antibacterial agents, which may become useful therapeutic tools and represent a source for the development of novel antimicrobials. However, they were not effective against all bacteria, which shows that polyphenols alone might not substitute antibiotics.


Sign in / Sign up

Export Citation Format

Share Document