scholarly journals Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Corey J. Cochrane ◽  
Jordana Blacksberg ◽  
Mark A. Anders ◽  
Patrick M. Lenahan

Abstract Magnetometers are essential for scientific investigation of planetary bodies and are therefore ubiquitous on missions in space. Fluxgate and optically pumped atomic gas based magnetometers are typically flown because of their proven performance, reliability, and ability to adhere to the strict requirements associated with space missions. However, their complexity, size, and cost prevent their applicability in smaller missions involving cubesats. Conventional solid-state based magnetometers pose a viable solution, though many are prone to radiation damage and plagued with temperature instabilities. In this work, we report on the development of a new self-calibrating, solid-state based magnetometer which measures magnetic field induced changes in current within a SiC pn junction caused by the interaction of external magnetic fields with the atomic scale defects intrinsic to the semiconductor. Unlike heritage designs, the magnetometer does not require inductive sensing elements, high frequency radio, and/or optical circuitry and can be made significantly more compact and lightweight, thus enabling missions leveraging swarms of cubesats capable of science returns not possible with a single large-scale satellite. Additionally, the robustness of the SiC semiconductor allows for operation in extreme conditions such as the hot Venusian surface and the high radiation environment of the Jovian system.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gerhard Pfaff

AbstractNatural and synthetic iron oxide pigments are by far the most important colored pigments. Their high importance is based on the variety of stable colors ranging from yellow via orange, red and brown to black. Iron oxide yellow (α-FeOOH), iron oxide red (α-Fe2O3) and iron oxide black (Fe3O4) are the most important representatives of the iron oxide pigments. Synthetic iron oxide pigments are produced industrially on a large scale by solid-state processes, precipitation processes and by the Laux process. Main advantages of synthetic iron oxide pigments compared with natural types are their pure hue, the consistent, reproducible quality and their tinting strength. Iron oxide pigments are mainly used in construction materials, paints, coatings, and plastics, but also in cosmetics, pharmaceuticals and special applications such as ceramics, magnetic coatings and toners.


2006 ◽  
Vol 6 (3) ◽  
pp. 852-856 ◽  
Author(s):  
X. R. Ye ◽  
C. Daraio ◽  
C. Wang ◽  
J. B. Talbot ◽  
S. Jin

We have successfully demonstrated a facile, solvent-free synthesis of highly crystalline and monodisperse Fe3O4 nanocrystallites at ambient temperature avoiding any heating. Solid state reaction of inorganic Fe(II) and Fe(III) salts with NaOH was found to produce highly crystalline Fe3O4 nanoparticles. The reaction, if carried out in the presence of surfactant such as oleic acid–oleylamine adduct, generated monodisperse Fe3O4 nanocrystals extractable directly from the reaction mixture. The extracted nanoparticles were capable of forming self-assembled, two-dimensional and uniform periodic array. The new process utilizes inexpensive and nontoxic starting materials, and does not require a use of high boiling point and toxic solvents, thus is amenable to an environmentally desirable, large-scale synthesis of nanocrystals.


1998 ◽  
Vol 62 (5) ◽  
pp. 581-583
Author(s):  
Simon A. T. Redfern

How can the equilibrium and non-equilibrium thermodynamics of minerals be understood from their atomic-scale structural features? How can they be predicted, simply from models for the forces between atoms? Advances in analytical theory, statistical mechanics, experimental solid-state science, computational power, and the sophistication of a mineralogical approach that brings all of these together, means that these questions, once imponderable, are now realistically tractable. These questions have been exercising the minds of mineralogists over the last decade or so, and have motivated many developments in the science. Acting as way-markers along the path, there are a number of publications which have followed from meetings where these questions have been addressed. It is now twelve years since the publication of Microscopic to Macroscopic, an edition of Reviews in Mineralogy (Kieffer and Navrotsky, 1985) that sought to identify the fundamental controls on the bulk properties of minerals in terms of their atomic-scale characteristics.


2002 ◽  
Vol 722 ◽  
Author(s):  
H. M. van Driel ◽  
S.W. Leonard ◽  
J. Schilling ◽  
R.B. Wehrspohn

AbstractWe demonstrate two ways in which the optical band-gap of a 2-D macroporous silicon photonic crystal can be tuned. In the first method the temperature dependence of the refractive index of an infiltrated nematic liquid crystal is used to tune the high frequency edge of the photonic band gap by up to 70 nm as the temperature is increased from 35 to 59°C. In a second technique we have optically pumped the silicon backbone using 150 fs, 800 nm pulses, injecting high density electron hole pairs. Through the induced changes to the dielectric constant via the Drude contribution we have observed shifts up to 30 nm of the high frequency edge of a band-gap.


Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 163 ◽  
Author(s):  
Honorio Martin ◽  
Pedro Martin-Holgado ◽  
Yolanda Morilla ◽  
Luis Entrena ◽  
Enrique San-Millan

Physical Unclonable Functions (PUFs) are hardware security primitives that are increasingly being used for authentication and key generation in ICs and FPGAs. For space systems, they are a promising approach to meet the needs for secure communications at low cost. To this purpose, it is essential to determine if they are reliable in the space radiation environment. In this work we evaluate the Total Ionizing Dose effects on a delay-based PUF implemented in SRAM-FPGA, namely a Ring Oscillator PUF. Several major quality metrics have been used to analyze the evolution of the PUF response with the total ionizing dose. Experimental results demonstrate that total ionizing dose has a perceptible effect on the quality of the PUF response, but it could still be used for space applications by making some appropriate corrections.


2020 ◽  
Author(s):  
Yi Shi ◽  
Wenmao Huang ◽  
Jian Li ◽  
Yue Zhou ◽  
Zhongqiu Li ◽  
...  

<p>The growth of atomically dispersed metal catalysts (ADMCs) remains a great challenge owing to the thermodynamically driven atom aggregation. Here we report a surface-limited electrodeposition technique that uses site-specific substrates for the rapid and room-temperature synthesis of ADMCs. We obtained ADMCs by the underpotential deposition (UPD) of a single-atom nonnoble metal onto the chalcogen atoms of chemically exfoliated transition metal dichalcogenides and subsequent galvanic displacement with a more-noble single-atom metal. The site-specific electrodeposition (SSED) enables the formation of energetically favorable metal–support bonds, and then automatically terminates the sequential formation of metallic bonding. The self-terminating effect restricts the metal deposition to the atomic scale. The modulated ADMCs exhibit remarkable activity and stability in the hydrogen evolution reaction compared to state-of-the-art single-atom electrocatalysts. We demonstrate that this SSED methodology could be extended to the synthesis of a variety of ADMCs (for example, Pt, Pd, Rh, Cu, Pb, Bi, and Sn single atoms), showing its general scope for the large-scale production of functional ADMCs in heterogenous catalysis. </p>


Sign in / Sign up

Export Citation Format

Share Document