Polysaccharide from Pleurotus nebrodensis induces apoptosis via a mitochondrial pathway in HepG2 cells

2016 ◽  
Vol 7 (1) ◽  
pp. 455-463 ◽  
Author(s):  
Haiyan Cui ◽  
Shufen Wu ◽  
Yanping Sun ◽  
Tiantian Wang ◽  
Zhenjing Li ◽  
...  

PNA-2 mediated mitochondria-dependent apoptosis in HepG2 cellsin vitroandin vivo.

2008 ◽  
Vol 89 (9) ◽  
pp. 2175-2181 ◽  
Author(s):  
Fangling Xu ◽  
Xiaodong Liang ◽  
Robert B. Tesh ◽  
Shu-Yuan Xiao

Punta Toro virus (PTV; genus Phlebovirus, family Bunyaviridae) causes apoptosis of hepatocytes in vivo in experimentally infected hamsters and in vitro in cultured HepG2 cells. Screening for expression of apoptosis-related genes has shown alterations in the genes for tumour necrosis factor-α (TNF-α) and the TNF receptor family. This study examined the roles of the TNF receptor-related extrinsic pathway and the Bcl-2 family-associated mitochondrial pathway in PTV-induced cell death. The effects of caspase inhibitors (caspIs) and TNF on cellular viability, virus replication, and morphological and biochemical changes in apoptosis were examined in HepG2 cells at different time points after infection with PTV (Adames strain). The results showed that caspIs dampened the virus-induced reduction in cellular viability, partially suppressed and delayed viral titres and antigen expression, and partially decreased the expression of apoptotic genes, caspase activities and DNA fragmentation. TNF treatment further decreased cellular viability after PTV infection and increased the level of apoptosis, whilst caspIs partially inhibited these effects. These findings indicate that TNF, caspase-8 and caspase-9 contribute to PTV-induced hepatocytic apoptosis and that additional mediators are probably also involved in this process. These mediators from different pathways correlated with one another and may be interlinked.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 817
Author(s):  
Abbas Rahdar ◽  
Mohammad Reza Hajinezhad ◽  
Saman Sargazi ◽  
Maryam Zaboli ◽  
Mahmood Barani ◽  
...  

Curcumin is known to exhibit antioxidant and tissue-healing properties and has recently attracted the attention of the biomedical community for potential use in advanced therapies. This work reports the formulation and characterization of oil-in-water F127 microemulsions to enhance the bioavailability of curcumin Microemulsions showed a high encapsulation efficiency and prolonged release. To investigate the interactions of curcumin with one unit of the polymeric chain of surfactant F127, ethyl butyrate, and sodium octanoate, as well as the interaction between ethyl butyrate and one unit of the F127 polymer chain, the Density Functional Theory (DFT) calculations at the M06-2X level of theory, were performed in water solution. The MTT assay was used to assess the cytotoxicity of free and encapsulated curcumin on non-malignant and malignant cell lines. Combination effects were calculated according to Chou-Talalay’s principles. Results of in vitro studies indicated that MCF7 and HepG2 cells were more sensitive to curcumin microemulsions. Moreover, a synergistic relationship was observed between curcumin microemulsions and cisplatin in all affected fractions of MCF7 and HepG2 cells (CI < 0.9). For in vivo investigation, thioacetamide-intoxicated rats received thioacetamide (100 mg/kg Sc) followed by curcumin microemulsions (30 mg/kg Ip). Thioacetamide-intoxicated rats showed elevated serum liver enzymes, blood urea nitrogen (BUN), and creatinine levels, and a significant reduction in liver superoxide dismutase (SOD) and catalase (CAT) activities (p < 0.05). Curcumin microemulsions reduced liver enzymes and serum creatinine and increased the activity of antioxidant enzymes in thioacetamide-treated rats in comparison to the untreated thioacetamide-intoxicated group. Histopathological investigations confirmed the biochemical findings. Overall, the current results showed the desirable hepatoprotective, nephroprotective, and anti-cancer effects of curcumin microemulsions.


2018 ◽  
Vol 51 (5) ◽  
pp. 2065-2072 ◽  
Author(s):  
Wei Bian ◽  
Hongfei Zhang ◽  
Miao Tang ◽  
Shaojun Zhang ◽  
Lichao Wang ◽  
...  

Background/Aims: Disseminated tumors, known as metastases, are responsible for ninety-percent of mortality due to cancer. Epithelial to mesenchymal transition, a phenomenon required for morphological conversion of non-motile discoid shaped epithelial cells to highly motile spindle-shaped mesenchymal cells, is thought to be a pre-requisite for metastatic progression. Metastasis-associated 1 (MTA1) protein is a prime inducer of EMT and metastatic progression in all solid tumors including hepatocellular carcinoma (HCC). However, the molecular mechanisms that regulate the expression and function of MTA1 in HCC have not been elucidated. Methods: In silico prediction algorithms were used to find microRNAs (miRNAs) that may target MTA1. We examined the relationship between the expression of MTA1 and miR-183 using quantitative real time PCR. We also determined the levels of the MTA1 protein using immunohistochemistry. Reporter assays, in the presence and absence of the miR-183 mimic, were used to confirm MTA1 as a bona fide target of miR183. The effect of miR-183 on HCC pathogenesis was determined using a combination of in vitro migration and invasion assay, together with in vivo xenograft experiments. The correlation between miR-183 and MTA1 expression was also studied in samples from HCC patients, and in The Cancer Genome Atlas dataset. Results: Analysis of the sequence database revealed that MTA1 is a putative target of miR-183. MTA1 protein and RNA expression showed opposite trends to miR-183 expression in breast, renal, prostate, and testicular tissue samples from cancer patients, and in the metastatic HCC cell line HepG2. An inverse correlation was also observed between MTA1 (high) and miR-183 (low) expression within samples from HHC patients and in the TCGA dataset. Reporter assays in HepG2 cells showed that miR-183 could inhibit translation of a reporter harboring the wild-type, but not the mutant miR-183 3’-untranslated region (UTR). In addition, miR-183 significantly inhibited in vitro migration and invasion in HepG2 cells, and in vivo hepatic metastasis. Conclusion: Our results reveal a novel post-transcriptional regulatory mechanism for MTA1 expression via miR-183, which is suppressed during HCC pathogenesis.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2974 ◽  
Author(s):  
Emilly Lima ◽  
Rafaela Alves ◽  
Gigliola D´Elia ◽  
Talita Anunciação ◽  
Valdenizia Silva ◽  
...  

Croton matourensis Aubl. (synonym Croton lanjouwensis Jabl.), popularly known as “orelha de burro”, “maravuvuia”, and/or “sangrad’água”, is a medicinal plant used in Brazilian folk medicine as a depurative and in the treatment of infections, fractures, and colds. In this work, we investigated the chemical composition and in vitro cytotoxic and in vivo antitumor effects of the essential oil (EO) from the leaves of C. matourensis collected from the Amazon rainforest. The EO was obtained by hydrodistillation using a Clevenger-type apparatus and characterized qualitatively and quantitatively by gas chromatography coupled to mass spectrometry (GC–MS) and gas chromatography with flame ionization detection (GC–FID), respectively. In vitro cytotoxicity of the EO was assessed in cancer cell lines (MCF-7, HCT116, HepG2, and HL-60) and the non-cancer cell line (MRC-5) using the Alamar blue assay. Furthermore, annexin V-FITC/PI staining and the cell cycle distribution were evaluated with EO-treated HepG2 cells by flow cytometry. In vivo efficacy of the EO (40 and 80 mg/kg/day) was demonstrated in C.B-17 severe combined immunodeficient (SCID) mice with HepG2 cell xenografts. The EO included β-caryophyllene, thunbergol, cembrene, p-cymene, and β-elemene as major constituents. The EO exhibited promising cytotoxicity and was able to cause phosphatidylserine externalization and DNA fragmentation without loss of the cell membrane integrity in HepG2 cells. In vivo tumor mass inhibition rates of the EO were 34.6% to 55.9%. Altogether, these data indicate the anticancer potential effect of C. matourensis.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Hiroe Go ◽  
Jin Ah Ryuk ◽  
Hye Won Lee ◽  
In Sil Park ◽  
Ki-Jung Kil ◽  
...  

The present study was conducted to investigate the effect of Sagunja-tang on the lipid related disease in a rat model of menopausal hyperlipidemia and lipid accumulation in methyl-β-cyclodextrin-induced HepG2 cells. Inin vivostudy using menopausal hyperlipidemia rats, Sagunja-tang reduced retroperitoneal and perirenal fat, serum lipids, atherogenic index, cardiac risk factor, media thickness, and nonalcoholic steatohepatitis score, when compared to menopausal hyperlipidemia control rats. In HepG2 cells, Sagunja-tang significantly decreased the lipid accumulation, total cholesterol levels, and low-density/very-low-density lipoprotein levels. Moreover, Sagunja-tang reversed the methyl-β-cyclodextrin-induced decrease in the protein levels of critical molecule involved in cholesterol synthesis, sterol regulatory element binding protein-2, and low-density lipoprotein receptor and inhibited protein levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase as well as activity. Phosphorylation level of AMP-activated protein kinase was stimulated by Sagunja-tang. These results suggest that Sagunja-tang has effect on inhibiting hepatic lipid accumulation through regulation of cholesterol synthesis and AMPK activityin vitro. These observations support the idea that Sagunja-tang is bioavailable bothin vivoandin vitroand could be developed as a preventive and therapeutic agent of hyperlipidemia in postmenopausal females.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Peng Yu ◽  
Xi Xu ◽  
Jing Zhang ◽  
Xuan Xia ◽  
Fen Xu ◽  
...  

A glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide (LR) had been experimentally and clinically shown to ameliorate nonalcoholic fatty liver disease (NAFLD). This study aimed to investigate the beneficial effect of LR on NAFLD in vivo and in vitro and its underlying molecular mechanism. The effects of LR were examined on the high-fat diet-induced in vivo model in mice and in vitro model of NAFLD in human HepG2 cells. Liver tissues and HepG2 cells were procured for measuring lipid metabolism, histological examination, and western blot analysis. LR administration significantly lowered the serum lipid profile and lipid disposition in vitro and in vivo because of the altered expression of enzymes on hepatic gluconeogenesis and lipid metabolism. Moreover, LR significantly decreased Src homology region 2 domain-containing phosphatase-1 (SHP1) and then increased the expression of phosphorylated-AMP-activated protein kinase (p-AMPK). However, the overexpression of SHP1 mediated by lentivirus vector reversed LR-induced improvement in lipid deposition. Moreover, SHP1 silencing could further increase the expression of p-AMPK to ameliorate lipid metabolism and relative lipogenic gene induced by LR. In addition, abrogation of AMPK by Compound C eliminated the protective effects of LR on lipid metabolism without changing the expression of SHP1. LR markedly prevented NAFLD through adjusting lipid metabolism via SHP1/AMPK signaling pathway.


2020 ◽  
Vol 322 ◽  
pp. 87-97 ◽  
Author(s):  
Manqi Huang ◽  
Yizhou Zhong ◽  
Li Lin ◽  
Boxuan Liang ◽  
Jun Liu ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ye-Bin Pang ◽  
Jian He ◽  
Bi-Yu Cui ◽  
Sheng Xu ◽  
Xi-Lei Li ◽  
...  

HCC stem cells were reported as posttreatment residual tumor cells that play a pivotal role in tumor relapse. Fusing dendritic cells (DCs) with tumor cells represents an ideal approach to effectively activate the antitumor immunity in vivo. DC/HCC stem cell vaccine provides a potential strategy to generate polyclonal immune response to multiple tumor stem cell antigens including those yet to be unidentified. To assess the potential capacity of DC/HCC stem cell vaccines against HCC, CD90+HepG2 cells were sorted from the HCC cell line HepG2. DC and CD90+HepG2 and DC and HepG2 fused cells were induced by polyethylene glycol (PEG). The influence of fusion cells on proliferation and immunological function transformation of lymphocytes was assessed by FCM and ELISA assay, respectively. The cytotoxicity assay of specific fusion cell-induced CTLs against HepG2 was conducted by CytoTox 96 Non-Radioactive Cytotoxicity Assay kit in vitro. At last, the prevention of HCC formation in vivo was described in a mouse model. The results of FCM analysis showed that the proportion of CD90+HepG2 cells in the spheral CD90+HepG2 enriched by suspension sphere culture was ranging from 98.7% to 99.5%, and 57.1% CD90+HepG2/DC fused cells were successfully constructed. The fusion cells expressed a higher level of costimulatory molecules CD80, CD83, CD86, and MHC-I and MHC-II molecules HLA-ABC and HLA-DR than did immature DCs (P<0.05). And the functional analysis of fusion cell-induced CTLs also illustrated that CD90+HepG2/DC fusion cells showed a greater capacity to activate proliferation of lymphocytes in vitro (P<0.05). The CD90+HepG2/DC-activated CTLs had a specific killing ability against CD90+HepG2 cells in vivo. These results suggested that CD90+HepG2/DC fusion cells could efficiently stimulate T lymphocytes to generate specific CTLs targeting CD90+HepG2 cells. It might be a promising strategy of immunotherapy for HCC.


Sign in / Sign up

Export Citation Format

Share Document